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Federated Learning (FL) enables distributed training of human sensing models in a privacy-preserving manner. While promis-
ing, federated global models suffer from cross-domain accuracy degradation when the labeled source domains statistically
differ from the unlabeled target domain. To tackle this problem, recent methods perform pairwise computation on the source
and target domains to minimize the domain discrepancy by adversarial strategy. However, these methods are limited by
the fact that pairwise source-target adversarial alignment alone only achieves domain-level alignment, which entails the
alignment of domain-invariant as well as environment-dependent features. The misalignment of environment-dependent
features may cause negative impact on the performance of the federated global model. In this paper, we introduce FDAS, a
Federated adversarial Domain Adaptation with Semantic Knowledge Correction method. FDAS achieves concurrent alignment
at both domain and semantic levels to improve the semantic quality of the aligned features, thereby reducing the misalignment
of environment-dependent features. Moreover, we design a cross-domain semantic similarity metric and further devise feature
selection and feature refinement mechanisms to enhance the two-level alignment. In addition, we propose a similarity-aware
model fine-tuning strategy to further improve the target model performance. We evaluate the performance of FDAS extensively
on four public and a real-world human sensing datasets. Extensive experiments demonstrate the superior effectiveness of
FDAS and its potential in the real-world ubiquitous computing scenarios.
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1 INTRODUCTION
In recent years, more and more smart distributed devices, such as smartphones, smart personal assistants, and
other wearable devices have emerged. As the computing power of devices continues to increase and data privacy
concerns rise, there is a growing trend toward keeping data and computation on these devices, especially in the
area of human sensing [6, 16, 33, 39]. Federated learning (FL), such as FedAvg [27], provides a mechanism for local
model training and global model updating to keep data locally on the devices. The federated paradigm improves
data privacy and training efficiency in machine learning and has received widespread attention [6, 18, 32].
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Fig. 1. The UFDA problem. We consider each domain as a separate client. The more
detailed real-world scenarios (Scenario 1: each domain is treated as an independent
client; Scenario 2: each client contains multiple domains; Scenario 3: each domain
contains multiple clients. ) are discussed in Section 8.2.4.

While promising, it is challenging to enable the federated global model trained on the decentralized clients to
a new client with unlabeled data and achieve high performance. The performance degradation is attributed
to domain shift [12, 21, 51] between the unlabeled client and the labeled clients. The problem is defined as
Unsupervised Federated Domain Adaptation (UFDA) [37]. The UFDA and data heterogeneous under FL problem
are complementary (see Figure 1). The former focuses on domain adaptation between multiple labeled domains
and an unlabeled domain, while the latter aims to mitigate data heterogeneity among the labeled domains.
However, if the target domain has a sufficient number of labels, the UFDA problem will degrade into data
heterogeneity under FL.
To tackle the UFDA problem, recent methods FADA [37] and EI [17] utilize adversarial learning to minimize

pairwise source-target domain discrepancy, thereby enhancing the capacity of the global model to incorporate
more knowledge from the target domain. These methods are expected to map all the source and target features
to a common and closer feature subspace by adversarial alignment. While adversarial alignment has achieved
encouraging results in the UFDA setting, existing methods are limited by the fact that pairwise source-target
adversarial alignment alone only achieves domain-level alignment, which entails the alignment of domain-
invariant as well as environment-dependent features. The misalignment of environment-dependent features may
cause a negative impact on the performance of the federated global model. For example, the aligned features may
contain similar interference caused by tables around humans in the WIFI-based human sensing tasks [9, 44, 48].
Thus, the adversarial alignment of these environment-dependent features can minimize pairwise source-target
domain discrepancy, but may result in negative gains for the federated global model.
In this paper, we propose a Federated adversarial Domain Adaptation with Semantic Knowledge Correction

method (FDAS), which aims to correct source and target features to have more semantic knowledge during the
pairwise source-target adversarial alignment. To be specific, we achieve domain-level and semantic-level alignment
simultaneously to improve the semantic quality of the aligned features thereby reducing the misalignment of
environment-dependent features. However, there exist significant barriers to achieving effective domain-level
and semantic-level alignment in the UFDA setting.

(1): Irrelevant source domains may cause the negative transfer problem [35]. To mitigate the negative
transfer, existing works have explored the client selection [33] and dynamic aggregation weights [10, 37] to
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reduce the influence of irrelevant source domains. However, client selection or dynamic aggregation weights
methods are based on domain granularity. Thus, these methods will affect the entire domain features, limiting
the contribution of features that are more readily adaptable to the target domain. We propose a federated feature
selection mechanism that differs from existing domain granularity methods and operates at a finer feature
granularity. It selects easy-to-transfer source features first and then utilizes the learned knowledge to facilitate
the transfer of other hard-to-transfer features. The selected easy-to-transfer features possess greater similarity
with the target domain and have more contributions to the target domain, thereby reducing negative transfer.

(2): It is difficult to address the misalignment of samples belonging to different class labels but with
high similarity or the samples belonging to the same class label but with low similarity . One possible
solution is to learn an embedding subspace for each source domain, where features with the same class labels are
clustered together and features with different class labels are separated [31]. However, this method may cause
features with the same class labels to be pulled far away from each other across different domains, which is not
conducive to transfer. We propose federated feature refinement mechanism, which leverages global semantic
knowledge to reinforce the semantic components of the features.

(3): The bias accumulation caused by the incorrect conditional information . Conditional Adversarial
alignment [19, 26] can alleviate the problem of mode collapse [30] by the guided conditional information. However,
these approaches are based on a strong pre-assumption that the bias caused by incorrect conditional information
can be reduced by subsequent correct conditional information. Furthermore, the bias can easily accumulate and
be magnified in the UFDA setting due to the possibility of mutual influence among this incorrect conditional
information during different pairwise source-target computations. The easy-to-transfer features selected by
our federated feature selection mechanism often possess higher confidence and are more likely to be correctly
classified due to their ease of transferability. Thus, our selected features can enable the generation of higher-quality
conditional information.

(4): The generation of high-quality semantic knowledge is challenging during the pairwise source-
target semantic-level alignment. The semantic knowledge refers to prototypes [20, 29, 47], which can capture
similar semantic knowledge from different samples. However, prototypes are limited by the specific domains and
are difficult being applied to the target domain. We design cross-domain contrastive correction loss to generate
domain-invariant prototypes.

Thus, we develop Semantic-guidance Contrastive Correction Strategy (SGCC) and Selection-refinement Adver-
sarial Correction Strategy (SRAC) to achieve enhanced semantic-level and domain-level alignment simultaneously.
We implement a prototype of FDAS on multiple heterogeneous devices and conduct extensive experiments on
four public human sensing datasets and a real-world human sensing dataset, including WIFI, images, IMU, UWB
and smartphone. The major contributions of this work can be summarized as follows:

• We propose a Federated adversarial Domain Adaptation with Semantic Knowledge Correction method
(FDAS) to address the UFDA problem. We develop Semantic-guidance Contrastive Correction Strategy
(SGCC) and Selection-refinement Adversarial Correction Strategy (SRAC) to correct pairwise source-target
computation to achieve domain-level and semantic-level alignment simultaneously.

• We design a cross-domain semantic similarity metric as well as feature selection and refinement mechanisms
for SGCC and SRAC to enhance the domain-level and semantic-level alignment. The feature selection
mechanism can alleviate the negative transfer problem and reduce the bias accumulation caused by incorrect
conditional information. The feature refinement mechanism can address the misalignment of samples
belonging to different classes but with high similarity and protect feature privacy.

• We conduct comprehensive experiments on four public human sensing datasets and a real-world human
sensing dataset. Extensive experiments demonstrate the superior effectiveness of FDAS and its potential in
the real-world ubiquitous computing scenarios.
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2 RELATED WORK

2.1 Cross-domain Human Sensing
Since adopting machine learning approaches as a large-scale solution for human sensing recognition tasks still
face a major challenge that the performance of a machine-learned model may drop significantly when being
deployed in a new environment, many researchers have tried to address the cross-domain issue. Widar3.0 [53]
leverages multiple WIFI links to extract domain-independent features at the lower signal level [50] [43] [24],
which is called BVP. However, Widar3.0 can only be applied to WIFI scenarios with at least 3 links. Gao et al.
[12] extract position-independent features, denoted as MNP, from the hand-oriented view. However, it only can
be suitable to cross-position model deployment. EI [17] employ domain adversarial network to align the features
between source domains and target domains in the feature spaces. CrossSense [51] presents a translation solution
to generate virtual samples for new environment and train a robust model, WiGr [52] uses the similarity of the
target domain sample features to the source domain sample features to reduce the impact of domain-specific
features. However, most of these methods require access to raw data, which is not allowed in the federated setting.
To the best of our knowledge no prior works have investigated cross-domain human sensing in the federated
setting.

2.2 Unsupervised Federated Domain Adaptation
Unsupervised Federated Domain Adaptation (UFDA) Methods achieve multi-source domain adaptation while
maintaining data privacy and training efficiency. The UFDA problem was proposed by Peng et al. [37], and
there are mainly two works discussing the problem recently. FADA [37] is a federated domain adaptation
method using domain adversarial and feature disentangling, FADA utilizes adversarial alignment to minimize
the discrepancy between the target domain and the source domain and enhances knowledge transfer through
feature disentanglement. It also designs dynamic weights to address the negative transfer problem. KD3A [10]
is a knowledge distillation method. KD3A deviates from the federated learning paradigm and aims to achieve
high-performance target model rather than a viable global model. KD3A does not incorporate federated training,
thereby sacrificing the federated training efficiency. KD3A proposes a multi-source model knowledge distillation
method based on Knowledge Vote to obtain high-quality domain consensus knowledge. Then, the obtained
consensus knowledge is utilized to dynamically weigh the different source domains to prevent negative transfer.
Finally, BatchNorm MMD is utilized to minimize the domain distribution distance.

Our method (FDAS) addresses the significant barriers when employing the adversarial strategy in the federated
setting, which differs from KD3A completely. Compared with FADA, our method also has significant differences:
(1) FADA only used the original adversarial alignment strategy [11] on pairs of source and target domains and
ignored the challenges of adversarial alignment strategy in the federated setting. Our method designs feature
selection and refinement mechanisms to optimize adversarial alignment strategy in the federated setting. (2)
FADA learned domain-invariant features for each source domain by feature disentanglement. However, feature
disentanglement is limited by additional time-consuming adversarial training and ignored the experiment-specific
but task-related features. Our Method generates global semantic knowledge across domains and leverages all the
shared knowledge to correct local features simultaneously have semantic-level and domain-level information to
improve the semantic of the aligned features.

2.3 Adversarial Alignment
Adversarial alignment aims to generate transferable features by minimizing the discrepancy between source
and target domains. DANN [11]first applied an adversarial network in the Unsupervised Domain Adaptation
(UDA) problem to align the features between the source and target domains. CDAN [26] employed a conditional
adversarial network to the UDA problem to alleviate the effects of mode collapse [28].
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Our Selection-refinement Adversarial Correction Strategy approach (SRAC) differs from these methods in that:
(1) Our method refines the source-target features with local semantic knowledge to address the misalignment
of samples belonging to different classes but with high similarity and protect feature privacy. (2) Our method
selects confident-to-transfer samples to generate higher-quality conditional information to alleviate negative
transfer and reduce the bias accumulation caused by incorrect conditional information effectively. (3) Our method
imposes diversity constraints on unconfident-to-transfer samples, so that unconfident-to-transfer samples still
have the opportunity to be selected.

2.4 Prototype Contrastive Learning
Prototypes are usually defined as the mean feature of the same class [29, 40]. Since prototypes have the ability
to capture similar semantic knowledge from different samples, prototype learning is widely used in transfer
learning [38]. Contrastive Learning [5, 49]aims to achieve embeddings where the same samples are pulled closer
and those of different samples are pushed apart. FedPCL [41] utilized prototype contrastive learning to extract
more shared features in the federated setting.
Our Semantic-guidance Contrastive Correction Strategy (SGCC) is different from FedPCL: (1) FedPCL aggre-

gated all local features on average as a global federated prototype. We consider that different local features have
different contributions to the global federated prototype depending on how semantic similarity between local
features and the global federated prototype. Thus, we design a semantic similarity-aware local features selection
method to enable the global prototype contains more cross-domain semantic information. (2) The contrastive
alignment in FedPCL is based on the guidance with true labels. Our method designs contrastive alignment with
unlabeled data.

3 MOTIVATION
In this section, we provide a detailed definition of the Unsupervised Federated Domain Adaptation (UFDA)
problem and our key insights to address the problem.

3.1 Motivating Use Case
We consider a typical ubiquitous computing scenario: WiFi-based gesture recognition (see Figure 1). A significant
impediment in training gesture recognition models lies in adapting the model to new unseen users. Collecting
labeled data from unseen users is extremely challenging, primarily due to privacy considerations and the expensive
labeling. Furthermore, the collected seen user data may be owned by different families or confidential entities,
carrying a substantial amount of user privacy. Therefore, the goal of the UFDA problem is whether it is possible
to attain a high-performance cross-user gesture recognition model while safeguarding the privacy of both seen
and unseen users.

3.2 Problem Definition
Lets D𝑆 and D𝑇 denote the source domain and target domain. The data owned by the source and target domains
have the same label distribution but different feature distributions. In the UFDA problem, we have 𝐾 source
domains {D𝑘

𝑆
}𝐾
𝑘=1 and one target domain D𝑇 . For the 𝑘 ∈ 𝐾 source domain, we have 𝑁𝑘 labeled samples

{(𝑋𝑘𝑖 , 𝑌𝑘𝑖 )}
𝑁𝑘

𝑖=1. For the target domain, we have 𝑁𝑇 unlabeled samples {𝑋𝑇𝑖 }
𝑁𝑇

𝑖=1. Following the federated paradigm,
we have a global feature extractor F and a global classifier C. For the 𝑘 ∈ 𝐾 source domain, we have a domain-
specific feature extractor F 𝑘

𝑆
, a domain-specific classifier C𝑘

𝑆
and a domain-specific discrimintor DI𝑘𝑆 . For the

target domain, we have a feature extractor F𝑇 and a classifier C𝑇 . The goal of UFDA is to leverage knowledge
learned from muti-source domains{D𝑘

𝑆
}𝐾
𝑘=1 and learn an optimal feature extractor F𝑇 and classifier C𝑇 for D𝑇 .
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Method user14 -> user13 user15 -> user13 user16 -> user13 user14,15,16 -> user13
source-only 73.33 74 75.33 78
alignment 80.67 79.33 75.33 76

Table 1. The target accuracy of domain-level alignment and global domain optimization. Source-onlymethod: the combination
of source domains and trains a singlemodel without feature alignment; Alignmentmethod: domain-level adversarial alignment.
The "->" symbol represents the direction of transfer learning, where the source domains are listed before the arrow and the
target domain is listed after the arrow.

3.3 Pairwise Domain-level Alignment and Global Model Optimization
Existing work [37] has proved the effectiveness of pairwise domain-level alignment in the UFDA setting. However,
single domain-level alignment may cause a negative impact on the federated global model optimization. Pairwise
domain-level alignment refers to the process of training a source model for pairwise source-target domains to
reduce the distributional differences between the source and target domains. Global model optimization involves
the federated aggregation of the source models to further minimize the distributional discrepancies between the
source domains and the target domain.

To investigate a fine-grained analysis of the gap between domain-level alignment and global model optimization,
we conduct experiments on the Widar3.0 (BVP) datasets [53]. Our feature extractor consists of two convolutional
layers and three fully connected layers. We use a fully connected layer as the classifier and two fully connected
layers as the discriminator. The learning rates for our feature extractor, classifier, and discriminator have been
configured at 1𝑒−4. We set the local epoch is 1 and the global epoch is 400. We selected three users as the source
domains and one user as the target domain. The results are presented in Table 1. The source-only method is
to directly deploy the model trained in the source domains to the target domain. The domain-level alignment
method is to reduce the discrepancy between the source and target domains through an adversarial alignment
strategy. Global model optimization involves averaging all locally optimized models using FedAvg [27].

As is shown in Table 1, we can improve the accuracy of a single domain-level alignment by utilizing adversarial
strategies, such as pairwise domain-level alignment from a source domain (e.g. user14) to a target domain (e.g.
user13). Nevertheless, the accuracy of the federated global model decreases at this point. This is because domain-
level alignment can only guarantee the similarity of pairwise source-target features, but this similarity maybe
only environment-dependent and cannot provide effective gains for the global model. Thus, the observation
guided us to conclude that the domain-level alignment is ambiguous and does not entail the alignment of features
relevant to human activity recognition.
One direct solution to address the misalignment of environment-dependent features is to extract domain-

invariant features for each source domain to enhance transferability. However, despite considerable exploration [8,
34, 36, 37], this approaches remain highly challenging and result in the loss of certain environment-specific
features that may be beneficial for human activity recognition, such as the co-occurrence of "push & pull"
with "door". To track the issue, we have proposed an approach that does not rely on the direct extraction of
domain-invariant features. Instead, we propose a method for simultaneous alignment at both the domain level
and semantic level. The semantic-level alignment exploits the shared semantic information (task-related) within
each domain, while domain-level alignment facilitates the extraction of domain-invariant features. The semantic
and domain-invariant features are highly likely to pertain to the experiment-specific but task-related features.

3.4 The Negative Transfer Problem
Irrelevant source domains, which are very different from the target domain, may cause the negative transfer
problem [35]. We set up four different federated domains to analyze the phenomenon of negative transfer (see
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Method user 14,15 -> user 13 user 14,16-> user 13 user 15,16 -> user 13 user 14, 15,16 -> user 13
source-only 72.67 77.33 70.00 79.79
alignment 78.66 81.33 68.66 83.33

Table 2. The target accuracy of different UFDA setting. Source-only method: the combination of source domains and trains a
single model without feature alignment; Alignment method: domain-level adversarial alignment. The "->" symbol represents
the direction of transfer learning, where the source domains are listed before the arrow and the target domain is listed after
the arrow.

Table 2). The experiment setup is identical to that described in Section 3.3. Table 2 demonstrates that there are
substantial variations in the target accuracy achieved by different combinations of source domains, particularly
in the transfer from user15 and user16 to user13, where the model adaptation method results in a negative
gain. Therefore, the presence of irrelevant source domains that are very different from the target domain or even
some malicious source domains may lead to negative transfer, resulting in decreased target model performance.

To mitigate the negative transfer, an intuitive idea is to adopt client selection methods, such as similarity-based
node selection [33]. However, directly excluding irrelevant source domains through client selection methods
can minimize negative transfer, but it also results in a significant reduction of source data, which leads to a
decrease in target model performance. As is shown in Table 2, user15 contributes the least gain compared
to user14 and user16. However, directly discarding user15 would lead to performance degradation. Another
solution is to adopt dynamic aggregation weights based on clustering-based contribution measuring [37] and
knowledge voting [10], to reduce the influence of irrelevant source domains. However, dynamic aggregation
weights methods are based on domain granularity. Thus, the weights will affect the entire domain features,
which limits the contribution of easy-to-transfer features within that domain. FADA [37] and KD3A [10] employ
dynamic aggregation weight methods. we will provide relevant comparative results in Section 7.

In this paper, we propose a federated feature selection mechanism that operates at a finer granularity compared
to client selection and dynamic aggregation weights methods. By selecting easy-to-transfer features, which have
more contributions to the target domain, our approach can mitigate negative transfer while simultaneously
enhancing the contributions of irrelevant source domains. Our feature selection mechanism incorporates the idea
of curriculum learning, which prioritizes the easier-to-transfer features and gradually incorporates the learned
knowledge to transfer more challenging features.

4 APPROACH OVERVIEW
To solve the UFDA problem, we propose a Federated adversarial Domain Adaptation with Semantic knowledge
correction method (FDAS). The overall framework of FDAS is depicted in Fig. 2(a), which requires pairwise source-
target domain computation. Specifically, each source domain consists of a domain-specific feature extractor,
domain-specific classifier, and domain discriminator. The domain discriminator is utilized to minimize the
discrepancy between source and target domains.
In each federated training round, each source domain D𝑘

𝑆
first downloads a updated global feature extractor

F and classifier C to train a domain-specific feature extractor F 𝑘
𝑆
, a domain-specific classifier C𝑘

𝑆
and send

F 𝑘
𝑆
, C𝑘

𝑆
to the target domain for pairwise computation. To achieve domain-level alignment, the target domain

needs to transmit the refined features to the source domain during the pairwise computation. Note that our
feature refinement leverages local target prototypes to obfuscate raw target features, thereby avoiding the direct
transmission of raw target features. Then, each pairwise computation between the sourceD𝑘

𝑆
and target domain

D𝑇 perform Semantic-guidance Contrastive Correction Strategy (SGCC) and Selection-refinement Adversarial
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Fig. 2. (a) The framework of the proposed FDAS. It requires pairwise source-target domain computation and achieves
domain-level and semantic-level alignment simultaneously. (b) One of the pairwise source-target domain computations
contains SGCC and SRAC. SGCC consists of feature selection and semantic-level correction components. SRAC consists
of feature selection, feature refinement and domain-level correction components. We authorize the exchange of model
parameters and prototypes between clients and servers. We only allow the transmission of target refined features between
pairwise source-target computation. The feature refinement mechanism can protect the target feature privacy.

Correction Strategy (SRAC) to achieve domain-level and semantic-level alignment simultaneously, which is
depicted in Fig. 2(b).
SGCC first performs feature selection to select reliable features to generate a global prototype P = {P 𝑗 }𝑁𝑝

𝑗=1,
where 𝑁𝑝 is the number of categories in this task. SGCC then performs semantic-level correction based on the
global prototype to correct local features to carry more semantic-level information. Meanwhile, SRAC first uses
the results of feature selection to exclude unconfident-to-transfer features and perform feature refinement with
the global prototype learned from SGCC. SRAC then combines the refined features of the source-target domains
and the output of the classifier as the input to the discriminator to perform the domain-level correction to correct
local features to carry more domain-level information.
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SGCC and SRAC update iteratively and jointly. SGCC provides SRAC with global semantic knowledge guidance
to help SRAC achieve better domain-level alignment. SRAC provides cross-domain knowledge support for SGCC
and enable it to achieve better semantic-level alignment.
After each round, each source domain uploads the local optimized model and aggregates all models on the

server. Until the end of the federation training, the target domain downloads the optimized global model from
the server. Under our optimization, the global prototype will be domain-invariant. Thus, we use high-quality
pseudo-labels generated by the semantic similarity measurements between the local features and global prototype
to fine-tune the target domain model and further improve the target model performance.

5 SEMANTIC-GUIDANCE CONTRASTIVE CORRECTION STRATEGY
The object of Semantic-guidance Contrastive Correction Strategy (SGCC) is to provide global semantic knowledge
and perform semantic-level correction.

Global semantic knowledge generative. SGCC uses prototypes to represent semantic knowledge because
prototypes can capture semantic similarity from different samples across domains [42, 46]. However, The
prototypes are usually aggregated directly from all features, which may have the following challenges in the
UFDA problem: (1) Due to feature shift, different local source features have different contributions to the global
prototype. Thus, it is not wise to directly aggregate all features on average. (2) Prototypes are limited by the
specific domains and are difficult to apply to the target domain. Thus, generating high-quality prototypes for the
target domain is challenging.

To address the challenges, SGCC uses feature selectionmechanisms to select reliable features before aggregation.
Inspired by PFAN [4], we desgin a feature selection based on cross-domain semantic similarity metric for each
source domain to achieve high-quality domain-invariant prototypes. We define the cross-domain semantic
similarity Φ for each source domain D𝑘

𝑆
, where Φ is computed as follows:

Φ(𝑋𝑘 ( 𝑗 )
𝑖

) = Sim(F 𝑘
𝑆 (𝑋𝑘 ( 𝑗)

𝑖
),P 𝑗

𝑜𝑙𝑑 ) + Sim(F 𝑘
𝑆 (𝑋𝑘 ( 𝑗)

𝑖
),P 𝑗

𝑇 (𝑜𝑙𝑑) ), (1)

where Sim(., .) denotes the cosine similarity, P 𝑗

𝑜𝑙𝑑 denotes the global prototype belonging to class 𝑗 in the previous
round, P 𝑗

𝑇 (𝑜𝑙𝑑) denotes the local target prototype belonging to class 𝑗 in the previous round, 𝑋𝑘 ( 𝑗)
𝑖

represents the
𝑖-th sample from the 𝑘-th source domain belonging to class 𝑗 . In the early stage of training, the first term plays a
dominant role because the large discrepancy between the source and target domain. In the later stage of training,
the second term gradually plays a greater role because the certain source-target discrepancy reduction. For the
target domain D𝑇 , Φ can be obtained by:

Φ(𝑋𝑇 ( 𝑗 )
𝑖

) = Sim(F𝑇 (𝑋𝑇 ( 𝑗)
𝑖

),P 𝑗

𝑇 (𝑜𝑙𝑑) ), (2)

where 𝑋𝑇 ( 𝑗)
𝑖

represents the 𝑖-th sample from the target domain belonging to class 𝑗 . We select the top-𝑁 reliable
sample features of each source domain according to the value of Φ and compute the local source prototype P 𝑗

𝑘

on the selected featuresD̂𝑘 ( 𝑗)
𝑆

:

P 𝑗

𝑘 =
1

|D̂𝑘 ( 𝑗)
𝑆

|

∑︁
𝑋

𝑘 ( 𝑗 )
𝑖

∈D̂𝑘 ( 𝑗 )
𝑆

F 𝑘
𝑆 (𝑋𝑘 ( 𝑗)

𝑖
). (3)

For the target domain, we set a more stringent condition to ensure that the selected sample features of the
target domain can provide effective cross-domain semantic contributions. We constrain that the features can be
selected only when the value of Φ exceeds a certain threshold 𝜏 . So, we can obtain the local target prototype P 𝑗

𝑇
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on the selected features D̂ ( 𝑗)
𝑇

as follows:
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Thus, our feature selection always tends to select features with higher global semantic similarity. After feature
selection, SGCC averagely aggregates the local prototypes of all the source and target domains on the server to
generate global semantic knowledge:

P 𝑗
=

∑
𝑘∈[0,𝑁𝑘 )

( |D̂𝑘 ( 𝑗)
𝑆
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𝑆

| + |D̂ ( 𝑗)
𝑇

|)
, (5)

where 𝑁𝑘 is the number of source domains. In the early training stage, the contribution of the target local
prototype P 𝑗

𝑇 is small since only a few target domain features are selected. However, our SRAC can achieve
domain-level alignment and more target domain features will be selected progressively. In this way, our global
prototype will capture more semantic features that are shared across all source and target domains.
Semantic-level correction. To leverage global semantic knowledge to correct local features to carry more

semantic knowledge, we define the cross-domain prototype contrastive correction loss term for the source domain
as follows:

L𝑠𝑐𝑜𝑛 = −𝛼 log
exp(Sim(𝑍𝑘 ( 𝑗)

𝑖
,P 𝑗 )/𝜏)∑

𝑗𝑎 ∈𝐶 ( 𝑗) exp(Sim(𝑍𝑘 ( 𝑗)
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𝑗𝑎 ∈𝐶 ( 𝑗) exp(Sim(𝑍𝑘 ( 𝑗)

𝑖
,P 𝑗𝑎

𝑇 )/𝜏)
, (6)

where 𝑍𝑘 ( 𝑗)
𝑖

= F 𝑘
𝑆
(𝑋𝑘 ( 𝑗)
𝑖

), 𝐶 ( 𝑗) = { 𝑗𝑎 ∈ [1,𝐶], 𝑗𝑎 ≠ 𝑗} is the set of labels distinct from 𝑗 , 𝜏 is the temperature
that can adjust the tolerance for feature difference, 𝛼 is the weighting parameters. The first term aims to align
the source features to the global prototype. The second term aims to align the source feature to the local target
prototype. For the target domain, we define confident-prototype contrastive correction loss term as follows:

L𝑡𝑐𝑜𝑛 = −log
exp(Sim(𝑍𝑇 ( 𝑗)

𝑖
,P 𝑗 )/𝜏)∑

𝑗𝑎 ∈𝐶 ( 𝑗) exp(Sim(𝑍𝑘 ( 𝑗)
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, (7)

where 𝑍𝑇 ( 𝑗)
𝑖

= F𝑇 (𝑋𝑇 ( 𝑗)
𝑖

) and 𝑋𝑇 ( 𝑗)
𝑖

∈ D̂ ( 𝑗)
𝑇

.
The motivation for our modification to the classic prototype contrastive alignment [41] in our UFDA setting

is to enhance higher-quality domain-invariant prototypes across the source and target domains: (1) For the
source domain, we align local features to the target domain in the hope that the subsequent global prototype will
contain more cross-domain features and have a greater chance of being selected by SRAC as confident-to-transfer
features, which is depicted in section 5. (2) For the target domain, we only align the features selected by feature
selection to global prototype in order to reduce the impact of misclassified target features.

6 SELECTION-REFINEMENT ADVERSARIAL CORRECTION STRATEGY
In this section, we introduce Selection-refinement Adversarial Correction Strategy(SRAC). The object of SRAC is
to utilize global semantic knowledge learned from SGCC, and perform domain-level correction. The domain-level
correction is based on an adversarial strategy. We have discussed the barriers to applying the adversarial strategy
to the UFDA setting in section 1. Thus, we devise federated feature selection and refinement mechanisms to
optimize adversarial strategy in the UFDA setting.
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Feature selection. Our feature selection mechanism aims to address the following two challenges: (1) Tradi-
tional adversarial alignment, typically aims to align pairwise source-target features, to minimize the distribution
discrepancy between the two domains. It is highly challenging because we cannot guarantee that the features of
the two domains can be aligned correctly in the feature space. The misalignment of irrelevant features may result
in negative transfer especially when considering the presence of malicious domains. (2) Conditional adversarial
alignment can alleviate the problem of mode collapse by the guided conditional information. The conditional
information is generally defined as the output vector of the classifier. However, the output vector may be the
result of misclassification and give wrong guidance for adversarial alignment.
Our intuition is that source-target features with high similarity often possess higher transferability and are

more likely to be classified correctly. Thus, Higher transferability implies less negative transfer, while higher
classification accuracy indicates higher-quality conditional information.

Therefore, we perform feature selection before domain-level alignment. Specifically, SRAC shares the feature
section mechanism with SGCC and only selects features with high similarity with the global prototype to
participate in adversarial alignment each round. The selected features will lead to a more confident output of the
classifier as conditional information, thereby reducing the bias caused by incorrect conditional information. We
name the selected features as confident-to-transfer features and the other unselected features as unconfident-to-
transfer features.

For the target domain, the confident-to-transfer features selected by SRAC are the same as those of SGCC. For
the source domain, we compute Φ(𝑋𝑘 ( 𝑗 )

𝑖
) = Sim(F 𝑘

𝑆
(𝑋𝑘 ( 𝑗)
𝑖

),P 𝑗

𝑜𝑙𝑑 ) and also consider a more stringent threshold 𝜏
to limit the negative transfer of features below the threshold. We consider a slowly rising threshold to improve
the quality of confident-to-transfer samples for all the source and target domains:

𝜏 =
1

1 + 𝑒−(𝑟𝑜𝑢𝑛𝑑+1)/𝑇
− 0.05, (8)

where 𝑟𝑜𝑢𝑛𝑑 denotes the current training round and 𝑇 is a constant, which is used to control the rate of change.
Finally, we can obtain the target confident-to-transfer features D̂ (𝑡𝑟 )

𝑇
and the source confident-to-transfer features

D̂ (𝑡𝑟 )
𝑆

.
The main idea behind feature selection is inspired by the curriculum learning approach, where the model

prioritizes learning easier knowledge first and then uses the acquired knowledge to learn more complex and
challenging knowledge, which will be evaluated in section 7. In comparison with FADA, our feature selection
mechanism can accelerate the convergence speed of adversarial alignment and reduce communication overhead.
A detailed discussion of this is provided in section 7.

Feature refinement. Feature selection can exclude the negative effects of the unconfident-to-transfer features.
However, even if we have correct conditional information, it is still difficult to reduce the misalignment of samples
belonging to different classes but with high similarity and enhance the alignment of samples belonging to the
same class but with low similarity.

Inspired by the effect of conditional information [7, 15, 23], we consider the additional semantic knowledge as
a new alignment constraint. Specifically, we achieve local refined features by element-wise addition of the local
features and the local prototypes. The main motivation is that we can enhance the similarity between the same
class and reduce the similarity between different classes through refined features. In this way, feature refinement
can enhance the adversarial alignment. In addition, the refined feature avoids the transmission of the raw features
and protects feature privacy.
We can obtain the refined features 𝑋𝑘 ( 𝑗)

′

𝑖
for the source domain:

𝑋
𝑘 ( 𝑗)′
𝑖

= 𝑋
𝑘 ( 𝑗)
𝑖

+ P 𝑗

𝑘 , (9)
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Fig. 3. The model accuracy on the raw and refined features. Raw features: the output of local feature extractor; refined
features: element-wise addition of the local raw features and the local prototypes. datasets: widar3.0 (bvp). Source domain:
(a)user14 (b)user15 (c)user16.

and the refined features 𝑋𝑇 ( 𝑗)′
𝑖

for the target domain:

𝑋
𝑇 ( 𝑗)′
𝑖

= 𝑋
𝑇 ( 𝑗)
𝑖

+ P 𝑗

𝑇 , (10)

where 𝑋𝑘 ( 𝑗)
𝑖

∈ D̂𝑘 (𝑡𝑟 )
𝑆

and 𝑋𝑇 ( 𝑗)
𝑖

∈ D̂ (𝑡𝑟 )
𝑇

.
The core idea of our feature refinement is to leverage global semantic knowledge to reinforce the semantic

components of the features. We evaluated the performance of global semantic knowledge and refined features to
validate the potential of refined features (see Fig. 3). We observed that the accuracy of our refined features is
consistently higher than that of the raw features in the later stage of training, indicating that the refined features
contain more semantic knowledge compared to the raw features. Thus, in this way, some samples belong to
different classes but have high similarity will be differentiated, while some samples that belong to the same class
but have low similarity will be brought closer together.

Domain-level correction. To achieve domain-level alignment, we define the adversarial loss term based on
feature selection and feature refinement mechanisms. Specifically, we can obtain conditional adversarial alignment
on selected source featuresD̂𝑘 (𝑡𝑟 )

𝑆
and selected target features D̂ (𝑡𝑟 )

𝑇
through two steps for each source-target pair.

In the first step, we keep the parameters of the feature extractor on the source-target pair unchanged and train
the domain discriminator:

L𝑎𝑑𝑣𝐷𝐼 = −𝐸
𝑋𝑘′
𝑖
∼D̂𝑘 (𝑡𝑟 )

𝑆

[logDI𝑘𝑆 (𝑍𝑘
′

𝑖 ⊕ 𝑦𝑖𝑠 )] − 𝐸𝑋𝑇 ′
𝑖

∼D̂𝑘 (𝑡𝑟 )
𝑇

[log(1 − DI𝑘𝑆 (𝑍𝑇
′

𝑖 ⊕ 𝑦𝑖𝑡 ))], (11)

where ⊕ is the concatenation operation, 𝑋𝑘′𝑖 = {𝑋𝑘 ( 𝑗)
′

𝑖
}𝐶𝑗=1 (𝐶 denotes the number of class labels), 𝑋𝑇 ′

𝑖 =

{𝑋𝑇 ( 𝑗)′
𝑖

}𝐶𝑗=1, 𝑍𝑘
′

𝑖 = F 𝑘
𝑆
(𝑋𝑘′𝑖 ), 𝑍𝑇 ′

𝑖 = F𝑇 (𝑋𝑇
′

𝑖 ), 𝑦𝑖𝑠 = C𝑘𝑠 F 𝑘
𝑆
(𝑋𝑘𝑖 ) and 𝑋𝑘𝑖 ∈ D̂𝑘 (𝑡𝑟 )

𝑆
, 𝑦𝑖𝑡 = C𝑘𝑠 F𝑇 (𝑋𝑇𝑖 ) and 𝑋𝑇𝑖 ∈ D̂ (𝑡𝑟 )

𝑇
.

In the second step, we keep the parameters of the domain discriminator unchanged and train the local feature
extractor:

L𝑎𝑑𝑣𝐹𝑠 = −𝐸
𝑋𝑘′
𝑖
∼D̂𝑘 (𝑡𝑟 )

𝑆

[logDI𝑘𝑆 (F 𝑘
𝑆 𝑋

𝑘′
𝑖 ];

L𝑎𝑑𝑣𝐹𝑡 = −𝐸
𝑋𝑇 ′
𝑖

∼D̂𝑘 (𝑡𝑟 )
𝑇

[logDI𝑘𝑆 (F𝑇𝑋𝑇
′

𝑖 )] .
(12)

Next, we further enhance the domain-level correction by imposing the entropy minimization constraints [13]
and diversity constraint [45] on the unselected features. The combination of these two constraints can increase
the possibility of unconfident-to-transfer being selected in the later training stage.
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7 TRAINING OPTIMIZATION
SGCC and SRAC update iteratively and jointly. SGCC provides SRAC with global semantic knowledge guidance
to help SRAC achieve better domain-level alignment. SRAC provides cross-domain knowledge support for SGCC,
enables semantic knowledge that is domain-invariant and achieves better semantic-level alignment. Thus, in
each round, we define the total source domain training loss as follows:

L𝑠−𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑠L𝑐𝑙𝑠 + 𝛽𝑠L𝑠𝑐𝑜𝑛 + (1 − 𝛼𝑠 − 𝛽𝑠 )L𝑎𝑑𝑣𝐹𝑠 , (13)

where L𝑐𝑙𝑠 is the task-specific cross-entropy loss. We define the total target domain training loss as follows:

L𝑡−𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑡L𝑡𝑐𝑜𝑛 + (1 − 𝛼𝑡 )L𝑎𝑑𝑣𝐹𝑡 + 𝛽𝑡L𝑚𝑖𝑛 − (1 − 𝛽𝑡 )L𝑑𝑖𝑣, (14)

where L𝑚𝑖𝑛 is the entropy minimization constraints [13], L𝑑𝑖𝑣 is the diversity constraints [45].
At the end of federated training, our gradually optimized global prototype will be domain-invariant. Thus, we

further propose a similarity-aware model fine-tuning strategy based on the global prototype. Specifically, we first
use the global classifier to generate a series of pseudo-labels. Then we share the feature selection mechanism with
SGCC and SRAC to select features with high cross-domain semantic similarity (Φ > 𝜏) and exclude low-quality
pseudo-labels. Finally, we utilize high-quality pseudo-labels to train a personalized target domain model. The
detailed training procedure is presented in Algorithm 1.

Algorithm 1 The Algorithm of FDAS

Input: 𝐾 source domain {D𝑘
𝑆
}𝐾
𝑘=1, one target domain D𝑇 , 𝐾 source feature extractor F 𝑘

𝑆
, 𝐾 source classifier C𝑘

𝑆
,

𝐾 source discriminator DI𝑘𝑆 , local source prototype P
𝑘

𝑆 , local target prototype P𝑇 , global feature extractor
F , global classifier C, global prototype P.

Output: Target domain feature extractor F𝑇 , classifier C𝑇
1: CenterExecutes:
2: initialize F , C, P
3: for each round t = 1, 2, . . . do
4: for each client 𝑐 ∈ 𝐾 do
5: F 𝑘

𝑆
, C𝑘

𝑆
, P𝑘𝑆 , P𝑇 = PairwiseCompute(𝑐 , F , C, P)

6: end for
7: Update F , C with parameter average aggregation
8: Update P with Eq.5
9: end for
10: Fine-tune F , C for D𝑇

11: PairwiseCompute://the 𝑐-th source-target computation
12: for each local epoch 𝑡 = 1 from 1 to 𝑋 do
13: Sample mini-batch from D𝑐

𝑆
, D𝑇

14: Train the 𝑐-th source-target model with Eq.13, Eq.14
15: Train the 𝑐-th discriminator DI𝑐𝑆 with Eq. 11
16: Compute local P𝑘𝑆 , P𝑇 with Eq.3, Eq.4
17: Update optimized F 𝑐

𝑆
, C𝑐

𝑆
, P𝑐𝑆 , P𝑇

18: end for
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8 EVALUATION
In this section, we evaluate the performance of our proposed FDAS intending to answer the following questions:

• Q1: Does FDAS outperform the baselines on the various human sensing datasets in the UFDA setting?
• Q2: How effective is each component in the design of our proposed FDAS?
• Q3: Has FDAS successfully learned features that can narrow the gap between the source and target domains?
• Q4: What is the wall-clock training time and computation/communication overhead of FDAS?

8.1 Experiment Methodology
Datasets. To demonstrate the generality of FDAS, we evaluate the performance of FDAS on four public human
sensing datasets including WIFI dataset, Depth Image dataset, UWB dataset and a real-world smartphone dataset.

• WIFI datasets: Widar3.0 [53]is a public WIFI-based gesture recognition dataset, which is provided by
researchers at Tsinghua University. The dataset is collected from 16 users (including both men and women).
In this dataset, 16 users perform different gestures (including push & pull, sweep, clap, slide, draw a circle
and draw zigzag) in three different environments, five different positions and five orientations.

• Depth images datasets: Depth image dataset [33] is a public image-based gesture recognition dataset
using a depth camera. In this dataset, 9 users perform five types of gestures (including good, ok, victory,
stop and fist) in three environments (outdoor, dark, and indoor).

• IMU datasets: IMU dataset [33] is a public IMU-based walking activity recognition dataset. In this dataset,
7 users conduct three walking activities (including walking in the corridor, walking upstairs and walking
downstairs) in two buildings.

• UWB datasets: UWB datasets [33] is a public UWB-based human movement detection dataset. In this
dataset, it detects whether someone (including 7 users) passes through in 3 different environments (including
a parking lot, corridor and room). The objective of human movement detection is a binary classification
task, aimed at determining whether a person is passing through a certain area or not.

• Smartphone datasets: Smartphone dataset is a real-world human activity recognition dataset, which is
collected by us. We develop an android app to collect HAR data using users’ own smartphone IMU module
We invited each user to perform 5 activities, including walking, typing, phone, sitting and standing with
different smartphones originated from distinct manufacturers. To preprocess the IMU data, we resample it
to a frequency of 50Hz, and apply a sliding time window of 2 seconds. This results in the generation of a
750-dimensional feature for each data sample.

Baselines:

• Source-only: The source-only method combines source domains and trains a single model without domain
adaptation. Thus, the source-only method can server as the lower-bound.

• f-EI: EI [17]is a state-of-the-art adversarial cross-domain method, which aligns sample features from source
and target domains in feature space by domain adversarial method. EI need to access both source and
target domain raw data. In our federated setting, we follow the original design to reimplement EI and only
modify the input unit of the model to adapt to the input of different human sensing datasets. Moreover, we
combined the FedAvg algorithm with EI to implement the federated version of EI, denoted by f-EI.

• FADA: FADA [37] is a federated domain adaptation method using domain adversarial and domain disen-
tangling. FADA also utilize adversarial alignment to minimize the discrepancy between the target domain
and the source domain and then enhances knowledge transfer through feature disentanglement. In our
experiments, we also only modify the input unit of the model to adapt to the input of different human
sensing datasets.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 6. Publication date: March 2024.

https://orcid.org/0000-0003-2872-7327
https://orcid.org/0000-0001-7897-5965
https://orcid.org/0000-0003-0498-1494


Privacy-Preserving and Cross-Domain Human Sensing by Federated Domain Adaptation with Semantic Knowledge Correction • 6:15

Table 3. The UFDA approaches on Widar3.0(BVP) (cross-user).

Method user5 user10 user11 user12 user13 user14 user15 user16 avg
source-only 73.57±0.72 80±0.68 71.85±0.46 61.33±0.67 78.86±0.41 78±0.67 80.19±0.42 73.59±0.51 74.71

f-EI 73.86±0.48 79.43±0.69 76.77±0.57 70.22±1.02 81.32±0.68 80.44±1.01 84±0.85 77.77±0.4 77.98
FADA 73.41±1.09 83.51±0.72 78.6±0.67 72.14±0.62 83.24±0.25 83.47±0.59 86.47±0.59 86.68±0.72 80.93
KD3A 79.87±0.47 85.22±0.57 82.04±0.11 73.73±0.51 88.94±0.27 82.45±0.39 85.86±0.67 89.22±0.47 83.42
FDAS 85.97±0.61 90.06±0.46 83.68±0.43 78.63±0.35 92.49±0.43 86.2±0.33 88.96±0.24 92.34±0.57 87.29

• KD3A: KD3A [10] is a knowledge distillation method. KD3A proposes a multi-source model knowledge
distillation method based on Knowledge Vote and BatchNorm MMD to obtain high-quality target model.
In our experiments, we also only modify the input unit of the model to adapt to the input of different
human sensing datasets. KD3A deviates from the federated learning paradigm and aims to achieve a
high-performance target model rather than a viable global model.

Experiment Testbed: In order to conduct a comprehensive evaluation of a federated learning system, it is
crucial to have an experimental testbed that accurately simulates the characteristics of real-world federated
learning scenarios. Thus, we consider the heterogeneous devices and networks of the clients. To be specific, we
utilized one Jetson Xavier NX device, one Jetson Nano device, and six Raspberry Pi 4B+ devices as edge clients,
while a 4-core 2G cloud servers a trusted central cloud for federated aggregation. We place the heterogeneous
IoT devices in different locations (room1, room2 and room3) to achieve distinct network environments. All the
devices connect to the server through a frp [1] proxy. In the Widar3.0, UWB and Imu datasets, sensor data
collected from the same individual is considered private and each individual (domain) is viewed as a client. In the
depth images datasets, sensor data collected within the same place (domain) is considered private and each place
is viewed as a client. In the smartphone datasets, data collected by the same sensor is considered private and
each smartphone (domain) is viewed as a client.We use 90 percent of data for training and 10 percent for testing,
respectively. We perform each experiment 10 times and provide 95% confidence intervals.

8.2 Overall Performance
In this section, we present our results comparing FDAS against other state-of-art methods on cross-user, cross-
place and cross-device scenarios in the UFDA setting.

8.2.1 The performance on cross-user datasets. We evaluate the cross-user performance of FDAS on Widar3.0,
UWB and IMU datasets. Note that we use BVP features of Widar3.0 datasets, which have been demonstrated
to mitigate the impact of different places. However, the BVP features still exist a significant domain-shift issue
among different users because of the behavior differences between human subjects. Thus, the detailed experiment
setup is as follows: (1) We consider the BVP data from all 8 users in Widar3.0 dataset who performed the same
set of actions as clients. We designate one of these clients as the target domain sequentially, while the remaining
clients were treated as the source domains. The experiment results as shown in Table 3. (2) We divided all data
into four parts, each of which includes data from different places to reduce the impact of cross-place. The detailed
experiment setup and results are presented in Table 4 and 5 (UWB:user#= user# + 1

4user5,6,7 and IMU:user#=user#
+ 1

4user4,5,6). Our feature extractor consists of two convolutional layers and three fully connected layers. We use
a fully connected layer as the classifier and two fully connected layers as the discriminator. Our proposed FDAS
demonstrates average accuracy rates of 87.29%, 88.03%, and 68.63%, respectively, surpassing the performance of
all other baseline approaches.

8.2.2 The performance on cross-place datasets. We evaluate the cross-place performance of FDAS on depth
images datasets. We merge the data from the same places across different users and grouped them into three
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Method user4 user3 user2 user1 avg
source-only 64.33±0.62 75.65±1.03 70.58±0.79 70.42±0.53 70.24

f-EI 68.26±0.47 80.73±0.58 72.31±0.95 72.48±0.66 73.44
FADA 70.36±0.42 88.64±0.68 82.35±0.83 77.3±1.03 79.66
KD3A 71.42±0.55 94.03±1.52 87.88±0.76 94.14±0.91 86.87
FDAS 70.53±0.92 95.32±0.65 89.59±0.61 96.97±0.79 88.03

Table 4. The UFDA approaches on UWB datasets (cross-
user).

Method user3 user2 user1 use0 avg
source-only 66.52±0.63 56.33±0.59 43.27±0.53 51.39±0.71 54.38

f-EI 72.51±0.73 64.46±0.57 49.37±0.44 52.91±0.65 59.81
FADA 73.83±0.26 61.64±0.78 56.58±0.37 53.11±1.12 61.29
KD3A 71.52±0.37 68.09±0.92 52.89±1.07 66.77±0.91 64.82
FDAS 76.38±0.76 66.98±0.75 61.67±0.81 69.49±0.32 68.63

Table 5. The UFDA approaches on IMU datasets (cross-user).

Method P1 P2 P3 avg
source-only 61.41±0.61 71.3±0.34 72.59±0.87 68.43

f-EI 64.78±0.4 75.96±0.7 74.9±0.76 71.88
FADA 66.05±1.09 77.69±0.87 75.43±0.44 73.05
KD3A 64.91±0.64 79.34±0.42 77.32±0.45 73.86
FDAS 79.98±0.63 82.02±0.59 78.8±0.67 80.2

Table 6. The UFDA approaches on depth images
datasets (cross-place).

Method D1 D2 D3 D4 avg
source-only 83.62±1.04 78.64±0.77 71.29±0.8 90.82±0.17 81.09

f-EI 90.17±0.54 86.83±0.59 89.09±0.22 90.95±0.21 89.26
FADA 90.68±0.44 85.42±0.32 87.11±0.12 93.1±0.52 89.08
KD3A 91.59±0.34 85.26±0.88 94.37±0.34 91.93±0.45 90.79
FDAS 94.48±0.58 92.91±0.48 93.6±0.56 96.18±0.65 94.29

Table 7. The UFDA approaches on smartphone datasets (cross-
device).

clients, (1) P1: outdoor-normal, (2) P2: indoor-normal, (3) P3: indor-dark. We select one of these clients as the
target domain sequentially, while the remaining clients were treated as the source domains. We use ResNet-101
[14] as the backbone of the feature extractor. We use a fully connected layer as the classifier and two fully
connected layers as the discriminator. The experiment results on Depth images Datasets as shown in Table 6.
Our proposed FDAS achieves 80.2% and outperforms all other baselines.

8.2.3 The performance on cross-device datasets. We evaluate the cross-place performance of FDAS on smartphone
datasets. We merged the data from the same users across different devices and grouped them into four clients
(D1, D2, D3 and D4). We also use a fully connected layer as the classifier and two fully connected layers as the
discriminator. The experimental results on IMU Datasets as shown in Table 7. Our proposed FDAS achieves
94.29% and outperforms all other baselines.

8.2.4 The performance in real-world UFDA scenarios. We next discuss the performance of FDAS in real-world
ubiquitous computing scenarios. The concept of domain describes data distribution and data from different
domains often exhibit heterogeneity, while the concept of client emphasizes the scope of privacy data protection.
Therefore, there are three distinct types of relationships between domains and clients in real-world scenarios.

• Scenario 1: each domain is treated as an independent client. The client is defined to protect the data
from each domain. For example, the Human Activity Recognition (HAR) data collected from each user
constitutes a domain, and the data of each user is private. Thus, exchanging raw data between each domain
is prohibited in the scenario.

• Scenario 2: each client contains multiple domains. The client is defined to protect the data from
multiple domains. For example, The HAR data collected from different users represents different domains,
but privacy concerns only arise when the data comes from different rooms (clients). Thus, cross-domain
data exchange within the same client is allowed, while cross-client data exchange is prohibited in this
scenario.

• Scenario 3: each domain contains multiple clients. The client is defined to protect the data from a
certain part of a domain. For example, The HAR data collected from different users represents different
domains, but the privacy concerns pertain to data collected from different data collection devices (clients).
Thus, data exchange between different clients within the same domain is prohibited.
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Table 8. Data partition for the three scenarios, where the number of user#_1 = user#_2 and user# = user#_1 + user#_2. Each
cell in the table represents a distinct client, and each unique user# corresponds to a different domain.

scenario partitioned source domains
1 user5 user10 user11 user12 user13 user14 user15 user16
2 user5 ∪ user10 user11 ∪ user12 user13 ∪ user14 user15 ∪ user16

3 user5_1 user10_1 user11_1 user12_1 user13_1 user14_1 user15_1 user16_1
user5_2 user10_2 user11_2 user12_2 user13_2 user14_2 user15_2 user16_2

FDAS has shown the effectiveness in the scenario 1. We further evaluate the performance in the scenario 2 & 3
on widar3.0 datasets by data partitioning. The detailed data partition is presented in Table 8. We consider one user
(domain) as the target domain, and the other users not belonging to the same target client are considered as the
source domains. The source domains can be partitioned into different clients in a coarse-grained or fine-grained
manner. We report the results of our FDAS performance in the three scenarios. We also provide the performance
of FDAS with centralized training, when all the source domains are considered as a client. In the centralized
training manner, our method only requires the pre-mixing of all the source data beforehand. The feature selection
and refinement mechanism still works. The results are presented in Fig 4.

We can have the following observations: (1) The performance of FDAS in scenario 2 is slightly better than in
scenario 1. This is because each client has more training data and enables the local model to learn the more generic
feature of the classes in scenario 2. Thus, the global model may have more opportunities to learn domain-invariant
features from pairwise domain-level alignment. (2) The performance of FDAS in scenario 3 is slightly lower
than in scenario 1. This discrepancy arises from the necessity to partition the target domain into two clients,
whereby we are constrained to utilize only one of them as the target training data due to privacy concerns.
The limited training data leads to a degradation of feature generality in the specific classes learned during
the pairwise source-target computation. We believe that increased local training data would ameliorate the
performance degradation incurred by this dataset partition. (3) FDAS (centralized) can achieve better performance
than scenarios with strict privacy constraints, where data sharing among source domains is prohibited. This is
attributed to the fact that FDAS with centralized training alleviates negative transfer (see Section 1) problem
caused by data heterogeneity among source domains.
Thus, scenarios with higher privacy requirements may lead to relatively lower cross-domain accuracy of the

federated global model. However, stringent privacy settings are prevalent in many scenarios, such as wearable
devices. Ourmethod demonstrates the ability to achieve performance closest to thosewith no privacy requirements
under highly strict privacy constraints in the real-world ubiquitous computing scenarios.

8.2.5 The performance on the target domain with limited labeled data. We further consider the additional situation
in real-world scenarios, where the target domain has a limited number of labels. Our method is also suitable for
this scenario. We utilize the true label to calibrate the pseudo labels generated during our training process. The
pseudo labels are used as conditional information for our adversarial training and similarity-aware fine-tuning. We
conduct the experiments on the WiFi dataset to show the performance of our method. We use user11, user12, and
user14 data as an example because these data exhibit the lower cross-domain accuracy as the target domain. We
measured the performance of our method when these users have 5%, 10%, 15%, 20%, and 25% labels, respectively.
The results are shown in Fig. 5.

We note an increasing performance trend in our method with the growing number of labels. This is primarily
attributed to two factors. Firstly, the use of labels as correct conditional information guides adversarial domain
alignment, thereby further alleviating the problem of mode collapse during adversarial training. Secondly, the
limited labeling is applied to enhance our similarity-aware fine-tuning strategy.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 1, Article 6. Publication date: March 2024.



6:18 • Kaijie Gong, Yi Gao, and Wei Dong

us
er5

us
er1

0

us
er1

1

us
er1

2

us
er1

3

us
er1

4

us
er1

5

us
er1

6

av
era

ge
50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

source_only
FDAS (Centralized)

FDAS (Scenario 1)
FDAS (Scenario 2)

FDAS (Scenario 3)
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8.3 Analysis of FDAS
In this section, we present ablation studies and a detailed analysis of our proposed FDAS. Our primary focus lies
in proving both semantic-level and domain-level alignment. We also provide the analysis of the key component
feature selection mechanism, while the other component studies are presented in Appendix A.

8.3.1 Semantic-level and domain-level alignment analysis. We implement FDAS without semantic-level alignment
(SGCC) and FDAS without domain-level alignment (SRAC) to analyze the contributions of the two different
alignments. We conduct the experiments on widar3.0 datasets. The result is shown in Fig. 6. We observe that
the combination of semantic-level and domain-level alignment achieves the highest model performance. The
misalignment of environment-dependent features in the single domain-level alignment limits the upper bound of
the performance of the adversarial strategy in the UFDA setting. The discrepancy between the source domains
and target domain results in limited efficacy of a single semantic-level alignment approach due to the lack of
high-quality cross-domain semantic knowledge.

The feature selection mechanism is the key component of the semantic-level and domain-level alignment. We
have discussed the difference between feature selection and client selection in section 3.3. Feature selection can
reduce negative transfer while minimizing the need to discard source data, while client selection will discard
the whole source domain. To validate the efficiency of the feature selection mechanism, we track the selected
features and record the number of transferred bytes in each pairwise source-target computation at different
stages of the training process (see Fig. 7). We have the following observations: (1) The transferred bytes count of
our proposed FDAS is consistently lower than f-EI and FADA for each pairwise source-target computation. (2)
The number of transferred bytes for most source-target pairwise computations (especially for user4-target and
user7-target pairwise) generally follows a pattern of initial increase, subsequent decrease, and then increase again.
This is because that our feature selection mechanism increases the proportion of selected source features with
high similarity to the target domain and reduces the proportion of selected source features with low similarity
to the target domain. It verifies that our feature selection mechanism can select the features that are easy to
transfer first, and then use the learned knowledge to transfer more hard-to-transfer features. In this way, FDAS
can improve the accuracy and reduce the network footprint compared to f-EI and FADA, while f-EI and FADA
always need to transfer the whole features.

8.3.2 The learned feature representations analysis. The learned feature representations are the features extracted
by the converged federated model on each domain. The feature can be used to evaluate the cross-domain
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performance of the federated model. To qualitatively evaluate the learned representation and further verify the
effectiveness of FDAS, we provide the t-SNE embeddings of the feature representation on both the source domain
and target domain, which is shown in Fig 8 and 9. In Fig 8, it is the feature extracted by FADA method. We can
observe that the data samples from the source domains are divided into 5 clusters. However, there still exists a
large variance between the features from the target domain (green points) and the source domains (other color
points). In Fig. 9, it is the feature extracted by our proposed FDAS method. Both the data samples from the target
(red points) and source (other color points) domains are clearly divided into 5 clusters. The feature visualization
illustrates that our proposed FDAS can minimize the discrepancy between the source and target domains in the
UFDA setting.

To better analyze the effectiveness of the learned feature representations, we utilize A-distance [2] to evaluate
feature discrepancy between the source domains and target domain. We calculate the approximate A-distance
𝑑 = 2(1 − 2𝜖) [25] for each pair-wise source-target clients on depth images. 𝜖 is the generalization error of a
two-sample classifier (e.g. kernel SVM), which tries to distinguish the source features and target features. The
results are shown in Fig. 10. We observe that the 𝑑 on our proposed FDAS are smaller than source-only features,
f-EI and FADA features. It can demonstrate that the extracted source-target features by FDAS are harder to be
distinguished and validate the reduction of descrepancy between the source and target domains.

8.4 The Overhead Analysis
In this section, we provide the wall-clock comparisons between source-only, f-EI, FADA and our proposed FDAS
to report the wall-clock training time and computation/communication overhead. Note that KD3A deviates from
the federated learning paradigm, and fails to attain a viable global model (only the target model is achieved).
KD3A does not incorporate federated training, thereby sacrificing the federated training efficiency. Thus, we
do not analyze the client-side overhead comparison between our proposed FDAS and KD3A for the sake of
fairness. We conducted experiments on Widar3.0 datasets, with user13 client data designated as the target domain,
and the data from the clients of the remaining users as the source domain. We treat each domain as a separate
client. Extensive experiments demonstrate that FDAS can substantially improve cross-domain performance while
incurring relatively low computation and communication overhead.

8.4.1 The wall-clock training time. We report the wall-clock time to reach the final accuracy for FDAS and
other methods, which are shown in Fig. 11. It can be observed that FDAS achieves a notable improvement on
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Fig. 8. FADA: Feature visualization on
the Depth images dataset by t-SNE.

Fig. 9. FDAS: Feature visualization on the
Depth images dataset by t-SNE.
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Fig. 13. The communication overhead

wall-clock time consumption compared to FADA, and a slight degradation compared to source-only and f-EI. The
reasons are as follows: (1) FDAS mainly consists of an additional adversarial network training and prototype
computation, compared to the source-only method. (2) FADA need to train two additional adversarial network
compared to the source-only method, and the adversarial network training is more time-consuming than our
prototype computation (GPUs are not easily available on ubiquitous computing devices.). (3) f-EI solely entails
supplementary adversarial network training in comparison to the source-only method, yet culminates in a
relatively diminished final accuracy.

8.4.2 The computation overhead. To illustrate the impact of heterogeneous devices on FDAS computation
overhead, we measure memory usage and computation time of three different heterogeneous devices (Jetson
Nano, Raspberry Pi, and Jetson NX) for each round. Among these heterogeneous devices, Jetson NX, with GPU
acceleration enabled, occupies a relatively larger amount of memory. The results are shown in Fig. 12. We observe
that the memory usage and computation time of FDAS are significantly lower on different devices compared to
FADA, while slightly higher than the source-only and f-EI methods. Fig. 12 also provides evidence that FDAS
demands fewer GPU resources on the client side in comparison to FADA, rendering it better suited for ubiquitous
computing scenarios.

8.4.3 The communication overhead. We measure the overall network footprint and computation time on hetero-
geneous networks for FDAS and other methods. We report the communication network usage and communication
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time for all methods at the final accuracy thresholds of 75%, 85%, and 95%, which is shown in Fig. 13. Reaching a
specific accuracy level is contingent on a combination of communication rounds, data transmission volume, and
network bandwidth. We have the following two observations: (1) In the initial training phases, FDAS exhibits
lower communication overhead compared to FADA and f-EI, while surpassing that of the source-only method.
This is because FDAS with the federated feature selection mechanism transmits fewer features compared to
FADA and f-EI, while conveying more of the selected features in contrast to the source-only method. (2) In the
later stages of training, the overall communication cost of FDAS becomes lower than that of source-only and
all other methods. This is because FDAS, with its two-level alignments, can align the semantic information of
data from multiple clients, thereby mitigating the data heterogeneity among clients and allowing the model to
converge in fewer communication rounds compared to the source-only method.

9 DISCUSSION

9.1 The Effect of Heterogeneous Devices and Networks
The introduction of heterogeneous computation and communication capabilities has increased the wall-clock
training time, while the accuracy of our proposed FDAS has remained unaffected. This is because the presence of
stragglers, characterized by low computation capabilities or limited communication bandwidth. Our FDAS is
established on FedAvg (the classic synchronous FL framework). In the classic FL framework, relatively higher
computation power or communication bandwidth clients have to wait for the completion of training on the
stragglers. The waiting time is the primary cause for the increased training time.
Existing work has explored many effective methods to mitigate the straggler problem. (1) One promising

method is to design an efficient node selection algorithm, such as TiFL [3] and ClusterFL [33]. The fundamental
concept revolves around the adaptive selection of clients with similar training times to participate in the training
process during each training round. (2) Another viable approach is to offer an asynchronous federated training
method, such as HFL [22]. The framework comprises a synchronous updater and an asynchronous updater. The
asynchronous updater integrates model updates from stragglers into the federated model training process, albeit
with a slight delay compared to the synchronous updater. We plan to integrate an effective method for mitigating
stragglers into FDAS as our future work to reduce the impact of heterogeneous devices on the training efficiency
of FDAS.

9.2 UFDA and Data Heterogeneous under FL
UFDA emphasis on the target domain having a limited number of labeled samples or being unlabeled, whereas
heterogeneity under FL typically involves scenarios with an abundance of labeled data. Our research problem
UFDA, is dedicated to the task of training a universal model among multiple source domains under FL, with
the primary objective of enabling seamless adaptation to an unlabeled target domain. The different domains
refer to data collected from different users or environments, typically characterized by data heterogeneity.
Hence, the target domain in the UFDA setting possesses two distinctive characteristics: (1) The target domain is
heterogeneous compared to all source domains. (2) The target domain lacks labels. Thus, the UFDA problem is a
domain adaptation problem in the context of federated learning, which differs from data heterogeneity under FL
due to the absence of the labeled target domain.

To address the UFDA problem, we need to reduce data heterogeneity in the latent space between the target and
source domains through domain adaptation. (see Fig. 1). Moreover, if the target domain has a sufficient number of
labels, the UFDA problem will degrade into data heterogeneity under FL. Thus, the UFDA and data heterogeneity
under FL problem are complementary.
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10 CONCLUSION
We propose an effective approach FDAS to address the UFDA problem. We explore the significant barriers when
employing the adversarial strategy in the UFDA setting. The main idea of FDAS is to perform semantic-level
alignment and domain-level alignment simultaneously for each source-target pair computation. Thus, we can
improve the semantic quality of the aligned features thereby reducing themisalignment of environment-dependent
features. In addition, we devise federated feature selection and feature refinement mechanisms to enhance the
domain-level and semantic-level alignment. Extensive experiments demonstrate the superior effectiveness and
generalization of FDAS.
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APPENDIX A

A THE DETAILED ABLATION STUDIES.
We provide detailed ablation studies for FDAS. We conduct evaluation experiments on Widar3.0 datasets to verify
the effectiveness of feature selection mechanism, feature refinement mechanism and model fine-tuning strategy.

A.1 Feature Selection mechanism
The feature selection mechanism is shared by semantic-level alignment and domain-level alignment, while
the refinement mechanism is only designed for domain-level alignment. Feature selection for SGCC is mainly
expected to improve the global prototype and reduce contrastive misalignment. Feature selection for SRAC is
mainly expected to reduce the bias accumulation caused by incorrect conditional information and alleviating
negative transfer problems.
To investigate the effects of the feature selection mechanism on both domain-level alignment and semantic

alignment, we implemented multiple ablations of FDAS: (1) version I: FDAS without feature selection mechanism
both in SGCC and SRAC. (2) version II: FDAS without feature selection mechanism in SRAC. (3) version III: FDAS
without feature selection mechanism in SGCC. We conduct the experiments on widar3.0 datasets and the result is
shown in Fig. 14. We can observe that all the ablations have degraded performance. version III can demonstrate the
crucial role of the feature selection mechanism in SGCC. This is due to the lack of a feature selection mechanism
that will lead to low-quality global prototype, and SGCC will cause a large number of contrastive misalignments
under the guidance of low-quality global prototype. version II can prove the important role of feature selection in
SRAC. This is because the feature selection mechanism effectively excludes the alignment of irrelevant features at
the feature level to alleviate negative transfer, and reduces the bias accumulation caused by incorrect conditional
information. The fact that version II sometimes performs worse than version I implies the significant impact of
negative transfer on SRAC. Without a feature selection mechanism, SRAC may suffer from negative transfer,
leading to a performance decrease of the federated global model, and even lower performance than the source-only
method.

A.2 Feature refinement mechanism
We implement FDAS without feature refinement mechanism to evaluate the effectiveness of feature refinement
mechanism. The result is shown in Fig. 15. We observe that the performance of FDAS without the feature
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refinement mechanism is inferior compared to FDAS. This is because the refined features contain more semantic
information compared to raw features, which can enhance similarity within the same class and reduce similarity
between different classes. In this way, the feature refinement mechanism can alleviate the misalignment of
pairwise source-target features and improve the performance.

A.3 A similarity-aware model fine-tuning strategy
Our similarity-aware model fine-tuning strategy aims to generate high-quality pseudo-labels by measuring the
similarity between target features and the domain-invariant prototypes generated by SGCC and SRAC. The result
is shown in Fig. 15. We can observe that FDAS with fine-tuning outperforms FDAS without fine-tuning. This
is due to the fact that personalizing fine-tuning on the final federated global model facilitates the extraction of
domain-specific features, thereby can achieve a further performance improvement.

APPENDIX B

B SENSITIVITY OF HYPER-PARAMETERS
We conduct experiments on Widar3.0 datasets to analyze the sensitivity of hyper-parameter 𝜏 , the combination
of 𝛼𝑠 and 𝛽𝑠 , and the combination of 𝛼𝑡 and 𝛽𝑡 in our approach. The parameter 𝜏 controls the proportion of local
features that are selected, where only local features with similarity to the global prototype above 𝜏 are selected.
We adjusted 𝜏 over the range of [0, 0.95] (see Fig. 16) and found that a smaller 𝜏 led to lower accuracy, indicating
a higher likelihood of negative transfer. Conversely, when 𝜏 was too large, there was a significant decrease in
accuracy, indicating that too few features were selected and preventing the model from improving. Therefore, we
considered gradually increasing 𝜏 with epoch to avoid situations where 𝜏 is either too small or too large, and we
achieved higher accuracy (88.67%) compared to using a fixed 𝜏 (86.32%).
The combination of 𝛼𝑠 and 𝛽𝑠 is used to modulate the contributions of adversarial alignment and semantic

alignment in the source domain. We conducted a parameter search over the ranges of [0, 0.95] for 𝜏 and [0, 0.16]
for 𝛽𝑠 , and the corresponding results are depicted in Fig. 17. We observed that higher accuracy was achieved
when 𝛼𝑠 was within the interval [0.75, 0.85] and 𝛽𝑠 was within [0.04, 0.12]. We also conduct experiments on
the combination of 𝛼𝑡 and 𝛽𝑡 for the target domain. The intervals for 𝛼𝑡 and 𝛽𝑡 were both set to [0.75-0.95]. As
illustrated in Fig. 18, we observed that the highest accuracy was achieved when 𝛼𝑡 was in the range of [0.75-0.9]
and 𝛽𝑡 was in the range of [0.75, 0.8].
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Fig. 17. The sensitivity of the combi-
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