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Abstract—Virtualized radio access networks (vRAN) enable
network operators to run RAN functions on commodity servers
instead of proprietary hardware. It has garnered significant
interest due to its ability to reduce costs, provide deployment
flexibility, and offer other benefits, particularly for operators of
5G private networks. However, the non-deterministic computing
platforms pose difficulties to effective quality of service (QoS) pro-
vision, especially in the case of hybrid deployment of time-critical
and throughput-demanding applications. Existing approaches in-
cluding network slicing and other resource management schemes
fail to provide fine-grained and effective QoS support at the
User Equipments level. In this paper, we propose UQ-vRAN, a
UE-level QoS provision framework. UQ-vRAN presents the first
comprehensive analysis of the complicated impacts among key
network parameters, e.g., network function splitting, resource
block allocation, and modulation/coding scheme selection and
builds an accurate and comprehensive network model. UQ-vRAN
also provides a fast network configurator which gives feasible
configurations in seconds, making it possible to be practical in
actual 5G vRAN. We implement UQ-vRAN on OpenAirInterface
and use simulation and testbed-base experiments to evaluate
it. Results show that compared with existing works, UQ-vRAN
reduces the QoS satisfaction ratio by 17%–40% under various
network settings, while minimizing the total energy consumption.

I. INTRODUCTION

A private fifth generation (5G) network provides dedicated
and exclusive connectivity for specific organizations or en-
terprises. It has been deployed in various industries (e.g.,
manufacturing, healthcare, etc.) due to its benefits of enhanced
security, low latency, and increased capacity. 5G Virtual Radio
Network (vRAN) is a key component of 5G infrastructure.
Compared to monolithic traditional RAN, vRAN is fully
software-based and disaggregated. It comprises the radio an-
tenna unit (RU), distributed unit (DU), and control unit (CU),
and runs on commodity computing platforms. Such archi-
tecture has many benefits, including cost reduction, flexible
upgrades, and mitigation of vendor lock-in [1], [2], [3], which
is very suitable for 5G private networks. However, compared
to dedicated hardware, commodity computing platforms are
non-deterministic due to resource contention, and may result in
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difficulties in providing QoS for private 5G User Equipments
(UE) [4], [5], particularly those with strict time demands.

Many efforts are being made to achieve effective QoS
provision. One important technology is network slicing [6].
It provides static and rigid resource isolation for specific
use cases, such as Ultra-Reliable Low-Latency Communica-
tions (URLLC) and Massive Machine-Type Communications
(mMTC). However, as 5G continues to develop, many new
use cases are emerging, each with their own unique network
bandwidth and end-to-end latency requirements that vary
across different application scenarios. The current “one-size-
fits-all” network slicing mechanism is not sufficient and flexi-
ble to meet these diverse requirements. In the literature, many
works target providing fine-grained resource management.
Generally, there are two optimization preferences, namely
re-orchestration and re-scheduling. Re-orchestration involves
changing the placement of the CU/DU functions in either the
edge or cloud [7], [8]. Re-scheduling involves re-configuring
the allocation of Resource Blocks (RBs) and Modulation and
Coding Scheme (MCS) for each UE [9], [10], [11], [12], [13].

While these works represent a solid step towards effective
and flexible QoS provision in 5G vRAN, they are not sufficient
in some scenarios, particularly where resources are scarce. In
Section II, we present a extreme motivating example to demon-
strate it. Our quantitative experiment also supports this claim,
as only 44% – 65% of UEs were satisfied in terms of delay
requirements when considering only orchestration or schedul-
ing. The fundamental reason is that the performance of UE is
influenced by multiple parameters that are interdependent in
their degree of impact. How about simply combining these
two optimization techniques together by using an iterative
approach (i.e., fix one and adjust the other)? Unfortunately,
it often gets stuck in poor results or fails to converge in
a reasonable amount of time. Therefore, we propose that
it is necessary to jointly consider re-orchestration and re-
scheduling for QoS provision in the context of the increasingly
tight spectrum resources. However, joint consideration is non-
trivial due to three aspects:

Challenge 1: It is extremely complicated to model the joint
impact of re-scheduling and re-Orchestration on QoS. Specifi-
cally, for a three-level disaggregation of RAN, the QoS of a UE
(i.e., throughput and delay) is related to numerous parameters,
including the modulation and coding scheme (MCS) selected,
the number of resource blocks (RB) allocated, the CU/DU split
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Fig. 1: 3GPP defines 8 RAN function splits. The functions left
the red line are in the DU, and the right are in the CU.

schemes, etc. Additionally, some of these parameters have a
mutual influence on the QoS, such as the CU/DU split scheme
affecting the delay variation, which is in turn influenced by
the choice of which gNB to connect with. Previous works
only focus on a single part of the vRAN and neglect the
inherent connection between them. In summary, it is difficult
to accurately model the impact of each parameter on QoS in
such a complicated multi-level network architecture.

Challenge 2: Scheduling and orchestration occur at differ-
ent time scales. It is challenging to get an effective policy
considering the execution granularity gap. The parameters are
tuned in different time granularity. For example, a CU/DU split
may take seconds or even minutes due to function migration
overheads, whereas RB allocation only takes milliseconds.
Therefore, the CU/DU split policy must be valid for some
time, which is challenging due to the network’s dynamics.

Challenge 3: It is difficult to obtain a joint policy promptly,
given the huge space of candidate configurations. It is nec-
essary to fast obtain an effective configuration scheme due
to the dynamic of 5G networks. However, it is challenging
due to the exponentially increasing solution space when joint
consideration. For example, for a small-scale deployment of
10 UEs and 10 vRANs, a state-of-the-art scheduler requires
17.2 hours to provide a policy, which is far from acceptable.

To address the above problem, we propose UQ-vRAN, an
effective, adaptive, and practical QoS provision framework
for UEs in 5G vRAN. The basis of UQ-vRAN is jointly
considering re-orchestration and re-scheduling. Specifically,
UQ-vRAN adjusts four network parameters to provide QoS:
1) at RH–UE, namely the MCS, the RB allocation, and
which gNB to connect; 2) at CU/DU, the split scheme.
Having carefully considered the correlation of these param-
eters, UQ-vRAN builds a comprehensive QoS model capable
of accurately representing each parameter’s impact on QoS.
To bridge the gap of re-scheduling and re-orchestration and
adapt to the dynamic network, UQ-vRAN introduces a novel
time-domain-based mixed performance indicator to evaluate
the potential of policy. Furthermore, UQ-vRAN proposes an
efficient configuration solver which degrades a super-scale NP-
hard problem into multiple linear programming sub-problems.
With UQ-vRAN, network operators can quickly obtain feasible
network configurations for performing re-scheduling and re-
orchestration. We evaluate the performance of UQ-vRAN
through simulations and prototyping validation based on Ope-
nAirInterface (OAI) [14]. The results show that UQ-vRAN
achieves a QoS satisfaction ratio of about 97%, which is
improved by 17-40% compared with existing works.

II. BACKGROUND AND MOTIVATION

TABLE I: The QoS satisfaction ratio (SR) of separate conder-
ation. “(x,y)” means a scenario with x gNBs and y UEs

(10,70) (10,80) (10,90) (10,100)
Only Orchestration 41% 38% 37% 52%
Only scheduling 61% 86% 63% 60%

A. Function Split in vRAN

vRAN, also known as the set of gNBs, consists of three
parts: the Central Unit (CU), Distributed Unit (DU), and Radio
Unit (RU). The protocol stack in a gNB has several layers,
each responsible for specific functions or sets of functions.
3GPP proposes eight different function split options for the
distribution of functions between the RAN CU and DU, as
shown in Figure 1. Functions in the DU are deployed at the
edge server, which is very close to the UEs. Functions in
the CU are performed at the central servers and benefit from
processing centralization. The more functions implemented in
the DU, the more processes are completed in the edge and
thus lower transmission overhead on the MH network [15].
In an extreme case, all functions are located in the DU (i.e.,
distributed RAN), which greatly reduces latency and improves
throughput. However, brings higher energy consumption and
cost, and the edge server has limited capacity and cannot bear
all services. Therefore, how to divide functions to achieve a
trade-off between energy consumption and performance is a
hot topic in recent years.

B. Why joint consideration?

This section provides an extreme motivating example to
intuitively demonstrate the importance of jointly considering
scheduling and orchestration. Consider a topology in Figure 2,
we assume that each UE supports function split schemes 1
and 8. Only one gNB can put functions on the edge site. The
fronthaul network (FH, the link between UE and DU) and
edge site consumes 20 ms. Placing all functions on the edge
can save 40 ms. Due to “frequency selective fading”, each UE
has different data rates (in kb/s) in different RBs (shown in
the left table in Figure 2). The delay requirements of UE1,
UE2, and UE3 are 50ms, 70ms, and 100ms, respectively. We
calculate the delay of transmitting 100 bits of data.

In the first case, we only re-orchestrate the network. RBs are
allocated evenly. Since UEs in gNB1 are more time-sensitive,
their functions are all put on the edge site. In such a setup,
the delay of UE1, UE2, and UE3 are 53 ms, 53 ms, and 100
ms respectively. QoS of UE1 is not met. In the second case,
we only re-schedule the network. We consider a traditional C-
RAN architecture, i.e., all functions are put on the central site.
gNB1 allocates the RBs to try to meet more requirements. In
this case, the delay of UE1, UE2, and UE3 are 80 ms, 67
ms, and 100 ms respectively. QoS of UE1 is not met. For
UEs connecting to resource-scare gNB (e.g., gNB1), separate
re-configuration is not enough and their requirements only can
be met by configuring RB allocation and CU/DU FS scheme.

We conduct simulation-based experiments to further verify
the insufficiency of separate considerations. We consider a
scenario with different scales, where All these UEs have QoS
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Fig. 2: Motivating example. Left: network setup; the table shows the data
rate. Mid: only re-orchestration; Right: Only re-scheduling.

UQ-vRAN 
Launcher

Policy
U
E

U
E

U
E

U
E

R
H

R
H

D
U

D
U

C
U

C
U

Request

+ UE-Identity

+ Response Time

+ Throughput

Request

Optimization 
Engine

Quick
Solver

Deployer

Modeling

Policy

Fig. 3: An overview of UQ-vRAN, which consists
of launcher, optimization engine, and deployer.

requirements. With the optimal solution, the delay satisfaction
ratio (i.e., the ratio of UEs whose delay requirements are
satisfied) is 100%. We measure their delay satisfaction ratio
and the results are shown in Table I. In the current simulated
setup, only about 40% and 60% of UEs’ requirements are
satisfied, which is far from optimal.

From the above two cases, it can be seen that multiple
components of vRAN all have an impact on the QoS and it
is necessary to consider them together especially when the
resource is scarce. So, how about simply combining them
in an iterative approach? Unfortunately, multiple components
in vRAN are coupled. Take an example. Having adjusted
the NR configuration to to meet the requirements of AR/VR
application, the traffic load into the edge network increases.
Then the delay in the edge side will increase correspondingly
due to the increased processing delay (which includes queuing
time and actual processing time). In other words, combining
them in an iterative approach may get stuck in poor results.
To get a feasible solution, it often takes multiple rounds of
interaction (2-5 rounds in our simulation) and brings huge re-
configuration overhead. Therefore, we propose that it is nec-
essary to jointly consider re-scheduling and re-orchestration.

III. THE OVERVIEW OF UQ-VRAN

Figure 3 shows the architecture of UQ-vRAN, which is
designed to function as a xApp at the nearRT RIC [16]. There
are three key components in UQ-vRAN, namely launcher,
optimization core, and deployer. At a high level, network
operators specify their requirements and submit them to the
UQ-vRAN. The launcher gathers these requests and assesses
whether to launch the UQ-vRAN optimization engine. The
optimization engine quickly provides a feasible policy that
considers the trade-off between meeting the needs of current
users and the overhead of reconfiguration, among other factors.
The deployer subsequently reconfigures the network. Next, we
describe these three parts.

A. Launcher and deployer

UQ-vRAN allows network operators to submit requests
specifying their requirements at the UE-level. The requests
collected by the request collector contain the following critical
information: 1) UE identity, i.e., 5G-GUTI (5G Globally
Unique Temporary UE Identity) 2) QoS requirements, e.g., the
transmission delay in milliseconds or the throughput demands.

The launcher extracts useful information from requests, and
decides whether to launch the optimization process.

Compared with scheduling, orchestration is more detrimen-
tal to performance. Thus the launcher first re-schedules the
network to meet UEs’ requirements. It holds information about
the current network status, including the network topology,
link qualities of UEs to different gNBs. When a new request
arrives, the launcher first determines whether the current
network setup can satisfy the request. If possible, it assigns
the gNB, chooses MCS, and allocates RB for the target
UE. Otherwise, it shares the information with the UQ-vRAN
optimization core. In addition to receiving new requests, the
launcher also works periodically or when the network states
(e.g., link quality, traffic load) experience significant changes
and UEs’ requirements are no longer met.

The deployer re-configures the network according to the
policy given by the optimization core. It reuses existing inter-
faces to adjust the setup (e.g., the latest F1 interface supporting
CU/DU splits in OpenAirInterface) to ensure security.

B. Optimization Engine
The optimization core design is critical to the functionality

of UQ-vRAN. It comprises an accurate network model and
a quick solver that work together to determine the most
feasible network setup when the launcher identifies the need
for reconfiguration. Notably, UQ-vRAN retains the current
configuration when there is no existing better policy.

The optimization engine considers various network configu-
ration parameters, including CU/DU splitting scheme, BS-UE
association scheme, and UE resource allocation, such as MCS
selection and RB allocation. Unlike previous approaches, UQ-
vRAN jointly considers both the air interface (i.e., the UE to
RU part) and the upper layer of the RAN (i.e., CU/DU split).
By deciding to which BS the UE is connected, the system
creates a multilevel decision space where the configuration
parameters are coupled together. The primary goal of the
optimization engine is to identify efficient setups that meet the
needs of multiple users while minimizing energy consumption
within this complex multilevel decision space. Given the high
overhead of reconfiguration, the chosen policy must remain
effective for some time. Furthermore, the timeliness of the
setup is critical, as UQ-vRAN needs to quickly adjust the
network configuration if the current setup is invalid.

In summary, the most important considerations in the design
include: 1) How to obtain effective setup parameters when
jointly considering scheduling and orchestration? 2) How to



ensure the timeliness of the configuration? We introduce these
two parts in detail in Section IV and Section V.

IV. SYSTEM MODELING

In this paper, we focus on two commonly used QoS metrics:
throughput and delay, which have gained widespread usage in
a variety of applications, including license plate recognition,
AR/VR, and others. We model the 5G vRAN in a transmission
time interval, considering an uplink scheduling scenario . Our
study could be extended to include a downlink.

A. Decision variables and implied constraints

The split scheme of each vRAN: We denote wp
s(t) ∈

{0, 1} as a binary variable indicating whether or not vRAN
v ∈ V adopts functional split method p ∈ P . Each vRAN
can only adopt a split scheme. We consider four practical
split schemes which are used in operational networks [8], i.e.,
scheme 8, 6, 3, and 1 (see Figure 1) which corresponds to
p = {1, 2, 3, 4} respectively.

The association between RU and UE: xvi (t) ∈ {0, 1} is
a binary variable indicating whether UE i is connected to the
RU of vRAN v. Most practical 5G networks are single-cell
scenarios, i.e., one UE can only connect to one vRAN.

MCS selection: Denote zmi (t) ∈ {0, 1} as a binary variable
indicating whether UE i ∈ I chooses MCS m ∈ M. One UE
can only use one MCS.

RB allocation: Denote yb,vi (t) ∈ {0, 1} as a binary variable
indicating whether RB b ∈ B of vRAN v is allocated to user
i ∈ I. Each RB can be allocated to at most one UE.

B. Delay formulation

The delay of UE k is the sum of TNR
k , TDU

k , TCU
k , which

are the delay of UE k at the NR, DU, and CU, respectively.
Delay of NR. The new radio delay TNR

k is the transfer
time from UE k to the RU, which can be presented as θk(t)

RUE
k (t)

.
θk(t) is the data size of UE to be sent in a Transmission Time
Interval (TTI) and RUE

k (t) is the data rate of UE k. For a
specific UE, its data rate decided by the MCS selected and
the number of RB allocated.

MCS defines modulation, indicating how many useful bits
can be transmitted per Resource Element (RE). A higher MCS
level m corresponds to a higher data rate, but requires better
link quality. We reuse the modeling in [11] for simplicity.
Specifically, when UE k selects MCS m in RB b of vRAN
v, if the link quality exceeds the threshold of MCS m, the
UE can obtain the corresponding data rate which can be get
from [17]; otherwise, its data rate drops to zero.

When the UE k is allocated with multiple RBs, the MCS
must remain the same across different RBs [17]. Therefore,
the aggregate achievable data rate of UE k can be given by:

RUE
k (t) =

∑
v∈V

∑
b∈B

∑
m∈M

xvk(t)y
b,v
k (t)zmk (t)rb,m,v

k (t). (1)

rb,m,v
k is the achievable data rate of UE i with MCS m.

Delay of DU/CU. For UE k, the delay of DU part mainly
consists of the transmission delay TDU,T

k from RU to DU

and the processing delay TDU,P
k at the edge site. For ease of

expression, we use a new matrix qEDGE
e,i =

∑
s∈S x

v
k(t)A

e
v(t)

to indicate the association between the UE i and the edge site
e. Ae

v(t) indicates whether the DU part of vRAN v is placed
on edge site e which is determined by distance, cost, etc.

For a UE k, TDU,T
k depends on the total amount of data to

be transmitted and the link capacity of the FH network CFH
e :

TDU,T
k =

∑
e∈E

qEDGE
e,k

∑
s∈S

Ae
v(t)

Θv(t)

CFH
e

,

where Θv(t) is the data size passed in by the RU of vRAN v
in TTI which equals to Θv(t) =

∑
i∈I x

v
i (t)R

UE
i (t) · TTI.

As to the processing delay, we assume an M/M/1 model
which has been widely used in 5G vRAN [7], where the
processing delay is equal to 1/(ψ−ϕ) where ψ is the service
rate and ϕ is the arrival rate. For an edge site e, the arrival rate
depends upon its input traffic load and the function it executes
(i.e., the split method). Mathematically, it is represented as:

lEDGE
e (t) =

∑
v∈V

Ae
v(t)Θv(t)

∑
w∈W

wp
v(t)δp,

where δp is the CPU load of different split methods at the
edge site which is equal to {0, 0.2, 0.35, 1} for split function
p = {1, 2, 3, 4} [8]. CP

e is the processing capacity of the edge
server e. The delay of CU part TCU,T

k is similar to TDU,T
k ,

details are omitted for conciseness.

C. Throughput formulation
The throughput of UE i is the minimum of its achievable

data rate in NR RUE
i , its occupied capacity in the FH network

and MH network (i.e., the link between CU and DU), and
its processing throughput in the edge and cloud site (i.e.,
TPEDGE

k and TPCLOUD
k ). Mathematically,

TPk = min(RUE
i , CMH

i , CFH
i , TPCLOUD

i , TPEDGE
i ).

The calculation of RUE
i is shown in Eq. (1). As to the CFH

i

and CMH
i , we consider that they are linearly dependent on

the input data rate of UE i, i.e.,

CFH
k =

∑
e∈E q

EDGE
e,k θk∑

i∈I
∑

e∈E q
EDGE
e,i θi

CFH
e ,

CMH
k =

θk∑
i∈I θi

CMH
c .

As to TPEDGE
k and TPCLOUD

k , we make an assumption that
all tasks have the same priority. In other words, the processing
throughput of UE k is also linearly dependent on its input data
rate. Mathematically,

TPEDGE
k =

∑
e∈E q

EDGE
e,i θk∑

i∈I
∑

e∈E q
EDGE
e,i θi

TPEDGE,e,

TPCLOUD
k =

θk∑
i∈I θi

TPCLOUD,c,

where TPEDGE,e and TPCLOUD,c are the processing
throughput of the edge site and cloud site, which are related
to the number of CPU cores, the CPU clock speed, etc. and
are considered as constants.



D. The optimization objective of UQ-vRAN

The primary goal of UQ-vRAN is to maximize the QoS
satisfaction ratio (SR). Besides, UQ-vRAN also considers
the energy consumption and the overhead of re-configuration
which are also not negligible. Therefore, the optimization
objective of UQ-vRAN is a function of the QoS SR, energy
consumption, and overhead of re-configuration intuitively.
However, re-orchestration involves complex operations such
as container restart and migration [8], which means that
policies cannot be updated as frequently as re-scheduling.
In other words, only considering momentary performance is
ineffective and insufficient when the network is dynamic. To
this end, UQ-vRAN determines the policy based on the QoS
satisfaction rate and energy consumption over a period of time.
However, designing an indicator to achieve the right balance
between accuracy and overhead presents challenges. Two main
factors impact the performance of the policy: 1) Network state
prediction granularity: to evaluate the policy’s performance in
the future, UQ-vRAN needs to predict the network states. But
there exists a trade-off between the accuracy and the compu-
tational overhead, when deciding the time granularity of the
prediction. 2) UQ-vRAN behavior modeling: the policy can
be update according to the network states. However, modeling
each situation to evaluate the policy is time-consuming.

We propose innovative performance indicators, discretized
-time-domain-based mixed indicators, to assess candidate re-
configuration policies. The proposed method discretizes time
into multiple points for policy verification and adapts the inter-
val between two points based on the expected rate of change
in the traffic load. Additionally, the approach introduces the
concept of “Free RBs” to simplify behavior modeling. In
this context, “Free RBs” denote RBs that are not necessarily
allocated to UEs. More “Free RBs” means more redundant
resources to cope with burst flow which ultimately leads to
better performance. Overall, the optimization objective can be
formulated as:

max

[∑
p∈P

(
αp

∑
i∈I

Qiri,p − βpEp)− γO +N

)]
(2)

The constraints are shown in Section IV-A. P is the set of
sampling points in a period. |P| is related to the change rate of
traffic load. If the absolute difference is larger than a threshold,
UQ-vRAN doubles the sampling points. UQ-vRAN reuses an
existing algorithm to predict traffic [18]. |P| ≥ 1. α, β and
γ are the coefficients. Qi presents the value of the request of
UE i. ri,p ∈ {0, 1} denotes whether request i is meet or not
at time p. Ep indicates the energy consumption whose model
is similar to [8]. O is the overhead of implementing the new
policy here we consider it a constant. N is a function of the
number of free RBs.

V. FAST RE-CONFIGURATION

A. The real-time challenge

Problem (2) is an INLP that has been proved as NP-hard.
Due to the extremely large decision space, existing numerical

solvers fail to compute an optimal solution in a reasonable
amount of time. Existing works speed up the optimization by
parallelization, distributed computing, etc, which have made
a very big breakthrough in solving speed. Only considering
MCS selection and RB assignment, SOTA achieves a schedul-
ing time of 100 µs with one GPU. However, in UQ-vRAN,
the size of optimization variables grows exponentially due to
more dimensional considerations. Compared the work which
only considers MCS selection and RB assignment, the number
of optimization variables of UQ-vRAN increases by |V||I|
|P||I| times. Take an example. For a small-scale 5G private
network where |I| = 10, |V| = 10, and |N | = 4, it takes
about 17.2h to get a feasible solution when directly applying
existing methods, which is unacceptable. How to fast provide
an optimal/near-optimal solution is the main challenge.

B. Basic idea

The UQ-vRAN engine follows a basic roadmap consisting
of three parts: 1) Decomposing the original problem into
a large number of mutually independent sub-problems; 2)
Narrowing the search space to a smaller but more promising
subspace; 3) Determining the optimal solution for the remain-
ing subset of variables that satisfy the constraints.

Decomposing the problem and reducing the search space
is challenging due to the multi-level decision variables and
tight coupling between them. UQ-vRAN judiciously performs
decomposition based on correlations between decision vari-
ables to create independent and computationally feasible sub-
problems that can be executed on weak computational units.
Furthermore, the system carefully selects sub-problems from
the set to reduce computational size, and uses adaptive-
intensity search to prioritize more promising regions. Finally,
UQ-vRAN determines the optimal solution for each sub-
problem. Each sub-problem is a binary linear program prob-
lem, which is NP-hard as well. Limited by the low computing
capability, UQ-vRAN adopts a Linear Programming Relax-
ation (LPR) based approximation algorithm to get a feasible
solution. According to the proof, UQ-vRAN will almost surely
obtain at least one near-optimal solution (e.g., ≥ 90% of
optimum). For more details on the proof, please refer to
Section 5.6 of our technical report [19]. Next, we present
the design details.

C. Decomposition

The original problem has four sets of variables, i.e., wp
v ,

xiv , yb,vi , and zmi . Recall that yb,vi , zmi are related to the
resource allocation of the UEs, and wp

v is the split method
of vRAN. These two parts are associated by xiv , and finally
form a multilevel decision space. Generally, there are 24 sub-
problem decomposition schemes for four sets of variables.
However, many decomposition schemes are not feasible due to
the correlation between different variables. For example, it is
hard to be determined to which UEs the RBs can be assigned
when the association between UEs and RU of vRAN has not
been determined.



By carefully analyzing the relationship between four vari-
ables, we choose the decomposition scheme “RU/UE asso-
ciation Split scheme- MCS selection” due to the “adaptive-
intensity search” we propose to use in Section 5.4.2. In the
first phase, Problem (11) is decomposed along the association
mechanism (i.e., xiv(t)) and generates |V|I sub-problems.
Then the sub-problem is decomposed along wvp(t) which
corresponds to function split mechanism and generates |P|V
sub-problems. The Obtained sub-problems are further decom-
posed along zmi (t) and eventually, UQ-vRAN will get |V|I
|P|V |M|I sub-problems. And the computation complexity
of each sub-problem is |B|I .

D. Narrowing the search space

After problem decomposition by enumerating all possible
settings, we then narrow the search space.

1) Removing unpromising sub-problems.
We first consider removing the unpromising sub-problems

which would not make UQ-vRAN lose the optimal solution.
UE-vRAN Association. UQ-vRAN determines the set of

RUs that UE k can connect, based on the relative large-scale
path loss from different RUs to this UE [9]. Specifically,

Bk =

{
b ∈ B

∣∣∣∣ gbk
minv∈V gvk

≤ δ

}
, k ∈ I

where δ (δ ≥ 1) is a pre-defined threshold to determine the
subset of RUs. gvk is the large-scale fading which can be given
by 140.7 + 36.7 log10

(
dbk

)
where dbk is the distance between

RU of vRAN b and user k (in km). Those sub-problems that
UE k connects to RU of vRAN V that V /∈ Vk can be
eliminated from the sub-problems set.

MCS Selection. Recall that there are |M| MCSs for each
UE to choose. A higher MCS brings a higher data rate and
requires better link quality. We use Mv,b

i to denote the max
MCS that the link quality can support when UE i is allocated
with the RB b of the vRAN v. When UE k selects MCS m
which is greater than MMAX

k = max(Mv,b
i )(b ∈ B), the data

rate are drop to zero. When UE k choose MCS m which
is smaller than MMIN

k = min(Mv,b
i )(b ∈ B), there always

exists a better MCS selection scheme that brings higher data
rate while not reducing the RB set that can be allocated. To
sum up, the optimized MCS schemes for UE k can be denoted
as M̂ i

s =
{
m |MMIN

k ≤ m ≤MMAX
k

}
, k ∈ I. Those sub-

problems that UE i chooses MCS M (M /∈ M̂ i
s) can be

eliminated from the sub-problems set.
2) Adaptive-intensity search.
Having removed unpromising sub-problems, there are still a

too large number of subproblems. To further reduce the size of
sub-problems, UQ-vRAN adopts an adaptive-intensity search
in the optimized sub-problem set.

Split scheme. Intuitively, for vRAN without target UE
connections, their functions should be placed on the cloud
as much as possible to save energy. For vRAN which are
connected to lots of target UEs or connected to UEs with strict
delay requirements whose NR resources (i.e., RBs) may be
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Fig. 4: The CDF of gaps between the optimal MCS and
MMAX . Left: |B| = 5, |U| = 25; Right: |B| = 5, |U| = 50

very scarce and they should be considered to place functions
on the edge servers.

UQ-vRAN classifies all vRANs into three categories,
resource-scare, resource-sufficient, and others by estimating
the amount of RBs needed. For UEi that has requirements
on delay, its minimum amount of RBs needed nRB

ue,i can
be estimated by θi(t)

(D−D′)r
MMAX

i

. θi(t) is the data size of

UE i to be sent in TTI, D′ denotes the delay other than
TNR and is considered as a constant which can be get from
historical data. rMMIN

i
is the achievable data rate of MCS

MMIN
i . For UEi that requires a throughput of THi kbps,

its minimum amount of RBs needed can be estimated by
THi

r
MMAX

i

. For vRAN v, the minimum amount of RBs needed

nRB
v can be given by

∑
i∈I n

RB
ue,i. We consider vRAN v to be

resource-scarce if nRB
v /|B| ≥ δhigh (i.e., 0.9), to be resource-

sufficient if nRB
v /|B| ≤ δlow (i.e., 0.7). For the resource-scarce

gNBs, UQ-vRAN sets the probabilities of searching four split
schemes as (0.2, 0.2, 0.2, 0.4); For the resource-scarce gNB,
the probabilities are (0.4, 0.2, 0.2, 0.2); Other gNBs follow a
uniform distribution.

MCS selection. Existing works believe that the search space
with MCS settings close to MMAX

k is the most promising
subspace for user k. However, preliminary experiments present
that the optimal solution does not conform to the uniform
distribution. We conduct experiments to obtain the optimal
MCS selection (not in real-time) for different numbers of UEs,
and the results are shown in Figure 4.

There are some observations from the figure: 1) The gap
is usually smaller than 9, which is consistent with existing
works [10]. 2) When the UE selects the maximum MCS, it has
the maximum probability of having selected the optimal MCS,
about 30%. 3) In most cases (about 90%), the gap between
the optimal and the maximum MCS does not exceed 5, i.e.
MBEST − MMAX ≤ 5. Based on the above observations,
UQ-vRAN adopts a stepwise MCS selection mechanism for
UE k. We divide the MCS values into three categories, namely
MMAX , MMAX −5 to MMAX , MMAX −9 to MMAX −5,
and progressively lower their search probability.

Association. For a UE, connecting to which vRAN is jointly
decided by multiple factors, such as link quality, the number
of UEs served by the vRAN, etc, which is more complex
than deciding split scheme chosen and MCS selection. It’s
hard to give suggestions intuitively. Fortunately, only a small
fraction of UEs are edge-cell UEs and most edge-cell UEs can
only connect to two or three BSs in reality [10]. This means
that the number of sub-problems generated by decomposition



along the UE-RU association (i.e., xvi ) is relatively small after
removing unpromising sub-problems. Therefore, UQ-vRAN
sets association scheme for each edge-cell UE following a
uniform distribution (with equal probability).

E. Determining the optimal solution

The final step is to solve the searched sub-problems and
choose the best solution which also meets the constraints. It
has been proved that the energy consumption is independent
of RB allocation [8]. Therefore, the RB assignments of dif-
ferent vRANs are decoupled, and UQ-vRAN decides the RB
assignment scheme for each vRAN in parallel to speed up
the solving. Unlike existing works whose objective function is
independent in terms of each RB [10], [9], [11], the allocation
of RB is coupled with each other in a vRAN when considering
QoS in our scenario. Therefore, UQ-vRAN considers a joint
RB allocation scheme for each vRAN rather than considering
how to allocate a single RB.

First, UQ-vRAN calculates the minimum number of RBs
needed by each target UE. For those UEs who have require-
ments on delay, given the end-to-end delay D, the minimum
number of RBs needed by UE k RNk = θk(t)

(D−D′)rM
. θk(t)

is the data size, D′ equals to TEDGE
k + TCORE

k + TPDN
k ,

rM is the achievable data rate of MCS M . For those UEs
who have requirements on throughput, given the end-to-end
delay TH , their minimum number of RBs needed is THk

rM
.

Since the split scheme of the connected vRAN, the association
between RU and UE, and MCS all have been fixed in the sub-
problem, these variables are already known. Having get nRB

k ,
the RB allocation problem is turn to that: Given |B| RBs, how
to allocate RBs to meet the requirements of different UEs?

1) Problem modeling.
To solve the problem, we first build a model. Our modeling

is for a specific vRAN and we omit the index of vRAN for
ease of exposition. We denote rbi ∈ {0, 1} as a binary variable
indicating whether UE i is allocated with RB b. The constraints
of RBs allocation include: a. each RB can be allocated to at
most one UE; b. the number of RBs allocated to UE i should
be greater than the number it requests

The optimization goal is to minimize the utilization of RBs
to reserve resources for potential new UEs, thus reducing the
overhead of UQ-vRAN. We denote RN b

i as a matrix indicating
whether UE i can use RB b given MCS M , i.e., whether the
link quality of UE when using RB b is greater than the SINR
threshold of MCS M . The problem is presented as:

min
∑
i∈I

∑
b∈B

RU b
i r

b
i

s.t. Constraints a, b,rbi ∈ {0, 1}
(3)

2) Problem solving.
Since Problem (3) is derived from sub-problems, it should

be solved fast so that UQ-vRAN can search for more sub-
problems in a given time. Unfortunately, Problem 3 is actually
a BLP problem and is NP-hard as well. To this end, UQ-
vRAN uses a Linear Programming Relaxation based algorithm
to obtain a feasible solution fast. Specifically, UQ-vRAN

TABLE II: The ratio of finding a feasible solution

Ratio of finding Solving time (ms)Number
of UEs Origin Ours Origin Ours

Num of
sub-prob

5 100% 100% 0.0372 0.0286 +30.09%
6 100% 100% 0.0397 0.0297 +33.46%
7 100% 100% 0.0427 0.0301 +42.18%
8 100% 100% 0.0448 0.0317 +41.33%
9 100% 99.90% 0.0476 0.0342 +39.24%

10 100% 99.80% 0.0530 0.0345 +52.99%

transforms the problem into linear programming by relaxing
the constraint rbi ∈ {0, 1} to rbi ∈ [0, 1], then use existing com-
mercial solvers to solve it. UQ-vRAN binarizes the candidate
solution. Since the RB assignment among different UEs is not
independent, straightforward binary methods (e.g., rounding)
are not feasible here. UQ-vRAN uses a greedy algorithm to
binarize R|B|

|I| . For RB B, Higher RB
I means higher rewards

when allocating RB B to UE I . Hence UQ-vRAN allocates
RB B to the UE I which has the maximum value.

3) Simulation verifying.
Relaxation and binarization all may make UQ-vRAN lose

the feasible solution. We conduct a numerical experiment
to measure the algorithm’s performance with |B| = 100.
We vary the number of UEs and compare our method with
those which have no optimization. The results are averaged
over 1,000 experiments and are shown in Table II. As the
UE’s number increases, UQ-vRAN can almost always find
a feasible solution in a shorter solving time. UQ-vRAN is
able to search 30%-50% more sub-problems than the original
method for a given execution time and execution environment,
greatly increasing the probability of finding a better network
configuration.

VI. NUMERICAL EVALUATION

A. Evaluation Methodology

We perform simulation experiments to evaluate UQ-vRAN.
The experiment is done on an ASUS desktop computer
with an Intel CPU i9-10900K CPU (3.7GHz). We use IBM
CPLEX [20] to solve the final sub-problem.

Setup. We consider a network with one cloud sites and
two edge sites. 20% of UEs are edge-cell UEs, i.e., they
are connectable to multiple vRAN. We set |B| = 100. Other
simulation parameters such as the static energy consumption
of central servers and edge servers, the link capacity of the FH
network and MH network, etc. are kept consistent with [8].
When no specification, the traffic is static. 50% UEs have
requirements on throughput and 50% have requirements on
delay. In the simulation, all UEs have QoS requirements. We
carefully design the parameters so that there always exists a
policy that can meet the requirements of all UEs. In other
words, the upper bound of the SR is 100%.

Comparison Benchmarks. We compare our solution
against the following benchmarks. 1) GreenRAN [8]. This
work adjusts CU/DU split schemes to minimize energy con-
sumption. It uses a genetic algorithm to solve the problem
directly. The origin work does not consider the transfer delay.
We add a new constraint of delay in GreenRAN for fairness.
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energy consumption. “(x, y)”: x gNBs and y UEs.

2) GPF [11]. This work adjusts the MCS selection and RB
allocation to maximize the data rate metric and does not con-
sider transfer delay as well. It uses a GPU-based enumeration
algorithm to solve the problem. In this paper, we add a new
delay constraint and change its objective function to energy
consumption. 3) UQ-vRAN-wo-AS, i.e., UQ-vRAN without
the adaptive-intensity search mechanism. 4) UQ-vRAN-wo-AA,
i.e., UQ-vRAN without the approximation algorithm.

B. Overall performance

Different traces. First, we evaluate the overall performance
of UQ-vRAN with different traces. In a simulated network
with 5 gNBs and 25 UEs, we changed the QoS requirements
of different UEs and measure the QoS satisfaction ratio and
energy consumption. Results are shown in Figure 5. The
satisfaction ratio of UQ-vRAN is 97%, which is 17% and 40%
higher than the ratio of GPF and GreenRAN. Meanwhile, UQ-
vRAN consumes the least energy consumption.

Different network topologies. In this section, we evaluate
UQ-vRAN on different network topologies With five gNBs,
the user population size |I| is chosen from {25, 40, 55}. With
ten gNBs, the user population size |I| is chosen from {60,
70, 80, 90}. We measure the satisfaction ratio and the energy
consumption of different mechanisms, given 10s to solve.

Results are shown in Figure 6. There are two findings:
a. Compared with adjusting CU/DU split scheme, NR re-
scheduling has better gain. This is because edge resources are
limited and incapable to hold all all functions. The CU/DU
splitting scheme is more coarse-grained, which means a waste
of resources to some extent; b. As the network scale expands,
the delay satisfaction ratio of UQ-vRAN is decreasing. This is
because the variable space of UQ-vRAN is larger, it is getting
harder to search an optimal solution.
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C. Fast obtain feasible solution

In this section, we evaluate UQ-vRAN with different so-
lution time. We measure the QoS SR in the scenario with
10 vRANs and 100 UEs. The results are shown in Figure 7.
Since neither GPF nor GreenRAN can give a solution within
the given time, we omit them in the figure. As seen from the
figure, UQ-vRAN(- wo-AA/AS) all obtain a feasible solution
in a short time (i.e., 2-3s) in both scenarios. Once exceeded
the time boundary, the benefit of running UQ-vRAN decreases.
For example, when the solution time is 50s, the SR of UQ-
vRAN is 94.5% which only increases by 9% compared with
the result whose solution time is 10s.

In order to find the reasons for the gap and the plummeting
revenue, we carefully explore the working procedure of UQ-
vRAN and found that the bottleneck lies in the commercial
solver. In solving the final sub-problem, the CPLEX solver
is not guaranteed to give the optimal solution to satisfy all
UEs, which makes the UQ-vRAN solution not optimal either.
Though the gaps, network operators can gradually approach
the optimal when needed by increasing the solution time,
computing capacity, etc.

D. Adaptive to dynamic networks

In this section, we verify the effectiveness of the hybrid
performance metrics based on the discrete-time domain. We
compare UQ-vRAN with a baseline that only considers instan-
taneous performance to determine the final policy. We vary the
traffic load at different rates and record the performance of
UQ-vRAN in networks with different levels of dynamic. The
results are shown in Figure 8. Compared with the baseline, the
QoS satisfaction rate of UQ-vRAN is 7.5% higher on average.
When the traffic is static, UQ-vRAN has a similar performance
to the baseline. With a greater dynamic level, the performance
of UQ-vRAN degrades from 96% to 80%. This is caused by
the reduced accuracy of the traffic prediction algorithm.

VII. PROTOTYPE EVALUATION

A. Prototype Implementation

Hardware and software. We implemented a private 5G
network testbed using OpenAirInterface (OAI) [14]. Figure 9
shows the testbed and its architecture. We use OAI-CN5G [21]
as the 5GC and use OAI5G [21] as the basic RAN. We deploy
the OAI RAN in Inspur Yingxin NE5260M5 Server (with Intel
C622/C627 chipset and 512GB RAM inside) and the OAI CN
in a host with Intel i7-11800H processor and 16GB RAM. We
use a USRP B210 as our RF module. Two UEs (SRT 830 5G
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Fig. 10: Performance of UQ-vRAN. Top: VR/AR & video;
Below: VR/AR application & IoT control application.

Box CPE) are connected to the private network for subsequent
evaluation. UQ-vRAN is encapsulated into an xAPP. There
are four basic xAPPs, including an information collection
xAPP, an RB control xAPP, an MCS control xAPP, and a
CU-DU split control xAPP. The information collection xAPP
reports the required network information of a specific RAN.
The RB/MCS/split control xAPPs send the control signaling to
execute the corresponding operations. The UQ-vRAN xAPP
outputs the generated execution results to these control xAPPs
for real-time scheduling. These xAPPs run independently with
the RAN threads. Then the message communication between
RIC and 5G RAN are based on E2 protocol. We replay the
data from TON IoT datasets [22] and OVRseen Datasets [23].

B. Real use cases validation

In the validation, we used two UE devices (UE1 and
UE2) to access the base station equipment with OAI. We
use two real use cases, i.e., VR/AR application & video, and
VR/AR & IoT control. VR/AR application has requirements
on delay and throughput. Video and IoT control applications
have requirements on throughput and delay respectively.

Overall performance. We record the delay and throughput
as shown in Figure 10. The blue line is the threshold of delay
of VR/AR and control application and the red line is the
threshold of throughput of VR/AR and video application. With
the start of UQ-vRAN, resources in the system are reasonably
allocated to corresponding UEs, and the requests of different
UEs are basically satisfied. It is worth noting that in the two
use cases, UQ-vRAN CU/DU performs CU/DU split scheme
which results in 3-10s.

Lightweight system costs We measure the CPU overhead
of UQ-vRAN. The CPU utilization of UQ-vRAN only in-
creases by 2.8-4.6% compared with the original OAI system.
Most of the computation overhead is introduced by the CPLEX
when finding a feasible solution. These results imply the huge
potential for UQ-vRAN in practical deployment.

VIII. RELATED WORK

QoS support in 5G. Effective QoS support is a hot topic in
5G research. FSA [24] is a slicing architecture for the fronthaul
network. It uses information from the wireless schedule to
identify the slice of a fronthaul data packet to meet different
Service Level Objectives (SLOs) of UEs. Besdies, a large
number of existing works investigate the delay guarantee
for 5G networks in Internet [25], edge computing [26], fog
computing [27] and IoT [28]. Concordia [29] is a user-space
deadline-aware scheduling framework. It mainly manages the
CPU resources among the vRAN and other workloads to
ensure that the vRAN meets its real-time signal processing
deadlines. Compared to these works, UQ-vRAN is oriented to
the delay requirements at the UE level. We investigate real-
time challenges from in vRAN based on general computing
environments from the perception of users in the demand side.

Resource management in 5G. A number of works focus on
the problem of effective resource allocation. Harutyunyan et
al. [30] propose a virtual network embedding (VNE) algorithm
to select the appropriate functional split for each small 5G
cell to minimize the inter-cell interference and the fronthaul
bandwidth utilization. Morais et al. [5] propose an model for
positioning radio functions to minimize computing resources
and maximize the aggregation of radio functions. M3 [10]
jointly optimized RB allocation, MCS assignment, and beam-
forming matrices for all users under all RRHs to maximize the
PF objective function in C-RAN. OrchestRAN [31] providesh
an orchestration tool for deploying data-driven inference and
control solutions with diverse timing requirements. Different
from these works, UQ-vRAN aims to provide QoS support
in vRAN. UQ-vRAN has to consider three-levels resources
management, i.e., new radio, CU, and DU which are strongly
coupled. Due to the fast scheduler, UQ-vRAN is able to obtain
the near-optimal solution in seconds.

IX. CONCLUSION

In this paper, we propose UQ-vRAN, a UE-level delay opti-
mization framework for 5G vRAN that achieves real-time data
transfer. UQ-vRAN includes an accurate and comprehensive
network model jointly considering the complicated impacts
among CU/DU splitting, RU/UE association, RB allocation,
and MCS selection. Through the exponentially increased vi-
able space, UQ-vRAN obtains the optimal/near-optimal solu-
tion efficiently by mechanisms such as decomposing, adaptive-
intensity searching, etc. We evaluate UQ-vRAN by simulation
experiments and testbed validation. Results show that UQ-
vRAN achieves about 97% QoS satisfaction ratio. Compared
with SOTA, the satisfaction ratio is improved by 17–40%.
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