
Exploiting Multiple Similarity Spaces for Efficient
and Flexible Incremental Update of Mobile Apps

Lewei Jin, Wei Dong∗, Bowen Jiang, Tong Sun, Yi Gao∗
College of Computer Science and Technology, Zhejiang University, China

Email: {jinlw, dongw, jiangbw, tongsun, gaoyi}@zju.edu.cn

Abstract—Mobile application updates occur frequently, and
they continue to add considerable traffic over the Internet.
Differencing algorithms, which compute a small delta between
the new version and the old version, are often employed to reduce
the update overhead. Transforming the old and new files into the
decoded similarity spaces can drastically reduce the delta size.
However, this transformation is often hindered by two practical
reasons: (1) insufficient decoding (2) long recompression time. To
address this challenge, we have proposed two general approaches
to transforming the compressed files (more specifically, deflate
stream) into the full decoded similarity space and partial decoded
similarity space, with low recompression time. The first approach
uses recompression-aware searching mechanism, based on a
general full decoding tool to transform deflate stream to the
full decoded similarity space with a configurable searching
complexity, even when it cannot be recompressed identically.
The second approach uses a novel solution to transform a
deflate stream into the partial decoded similarity space with
differencing-friendly LZ77 token reencoding. We have also pro-
posed an algorithm called MDiffPatch to exploit the full and
partial decoded similarity spaces. The algorithm can well balance
compression ratio and recompression time by exposing a tunable
parameter. Extensive evaluation results show that MDiffPatch
achieves lower compression ratio than state-of-the-art algorithms
and its tunable parameter allows us to achieve a good tradeoff
between compression ratio and recompression time.

Index Terms—Incremental update, differencing algorithm,
compression

I. INTRODUCTION

The increasing number of mobile applications and users has
resulted in the significant growth of application downloads and
updates in markets. According to Statista’s report, the number
of worldwide mobile application downloads is expected to
reach 299 billion by 2023 [32]. To keep up with frequent
updates and fixes [12], [14] in applications, leading App mar-
ket operators, such as Google Play [10], Huawei AppGallery
[13] and Galaxy-store [28], have to spend billions of dollars
on application updates every year, e.g., pay for the server
bandwidth or the CDN services.

Incremental update is a widely-used solution to reduce the
data traffic during application updates [11], [20], [22], [33]. It
computes the delta between two versions of the application and
only transmit the delta during the update. Researchers have

This work is supported by the National Natural Science Foundation of
China under Grant No. 62072396 and 62272407, the “Pioneer” and “Leading
Goose” R&D Program of Zhejiang under grant No. 2023C01033, and the
National Youth Talent Support Program. Wei Dong and Yi Gao are the
corresponding authors.

proposed many differencing algorithms for computing small
delta files over the years [2]–[4], [6], [7], [15], [19], [21], [34].
More sophisticated differencing algorithms have appeared in
recent years, e.g., xdelta3 [18], bsdiff [26], HDiffPatch [31],
archive-patcher [9], Delta++ [29]. They are generally more
suitable for mobile application updates.

Some algorithms focus on how to compute a compact
delta given two application files (i.e., APK files), e.g., xdelta3
[18], bsdiff [26], HDiffPatch [31]. These algorithms typically
perform difference computation in the original similarity
space, i.e., the old and new apk files are not changed before
difference computation. However, most of binary code and
resource files in an APK are independently compressed with
various versions of the deflate algorithm [5]. Compression
reduces the size of an individual file, but can also damage
the similarity between two versions of files. For example, it
is possible that two similar files would become quite different
after compression. To address this issue, some more advanced
algorithms, e.g., Delta++ [29] and archive-patcher [9], utilize
the decompression-before-differencing technique to drastically
reduce the delta size, i.e., they first try to transform the
compressed files into the decoded similarity space before
difference computation.

However, decompression before differencing is not always
possible, resulting in insufficient decompression in state-of-
the-art algorithms. Note that the reconstructed new app file
must remain identical to the original file [35], otherwise
it cannot pass the integrity check imposed by the Android
installer. By investigating 200 popular apps in the Huawei
AppGallery [13], we have found that an average of 24%
of bytes in the APK cannot be decompressed with the zlib
[1] tool used in archive-patcher, otherwise they cannot be
recompressed identically at the mobile side.

Incorporating more versions of deflate algorithm (e.g., 7zip,
libdeflate) is one possible solution. However, it faces two se-
vere challenges. First, it is impossible to incorporate all deflate
algorithms, especially for those implemented by commercial
companies which are not open source [27]. Even it is possible
to incorporate many popular deflate algorithms, it would incur
excessive large overhead (at the server side) for enumerating
all the algorithms and their compression parameters [25].
Second, it may cause huge recompression time at the mobile
side. For example, 7zip’s recompression time is almost 5x
compared with zlib. This is unacceptable as it significantly
impairs mobile user’s QoE [30].

To address the above challenges, we have proposed two
general approaches to transforming the deflate stream into
the decoded similarity space regardless of the specific version
of deflate algorithm, even when it cannot identically recom-
pressed.

• Our first approach tries to transform a deflate stream
into the full decoded similarity space. It is required that
the recompressed file is similar to the original deflate
stream so that a small patch could make it identical to
the original deflate stream. Our first approach builds on
top of precomp which is an existing tool to decompress
the streams using an enhanced zlib algorithm, allowing
“re-”compression and reconstruction using a very small
patch so that they are bit-to-bit-identical with the original
stream. We have proposed recompression-aware search-
ing mechanism with a configurable searching complexity
in order to reduce the recompression time at the mobile
side.

• Our second approach tries to transform a deflate stream
into the partial decoded similarity space. Note that all
deflate algorithm first compress the file using the LZ77
algorithm, and then further compress the LZ77 stream
using Huffman encoding. While LZ77 performs at the
byte level while Huffman encoding performs at the
bit level. Transforming the deflate stream into partial
decoded space (i.e., LZ77 stream) can also result in
significantly larger similarity compared with performing
difference computation in the original (e.g., compressed)
similarity spaces, since all existing differencing algorithm
operates at the byte level.

Generally speaking, computing at the full decoded similarity
space results in a small delta but result in additional overhead
of the patch and longer recompression time. Computing at
the partial decoded similarity space will typically generate a
larger delta but incurs a very small recompression time. To
strike a reasonable balance between the compression ratio and
the reconstruction time, we have devised a flexible algorithm
with a tunable parameter α, based on the above mentioned
two approaches to exploit both the full decoded similarity
space and the partially decoded similarity space for difference
computation. Specially, When α = 1, the algorithm compares
all deflate bytes in at full decoded similarity space, for the
highest level of compression. When α = 0, the algorithm
compares all deflate bytes at partial decoded similarity space
for the fastest recompression time at the mobile side.

We implement our algorithm, MDiffPatch, for differencing
(at the server side) and reconstruction (at the mobile side)
by incorporating the novel techniques and algorithms we
have proposed. Extensive evaluation results show that (1)
MDiffPatch achieves lower compression ratio than state-of-
the-art algorithms. In its most aggressive version (with α = 1),
MDiffPatch achieves an absolute reduction of 20.61% and
relative reduction of 47.01% compared with HDiffPatch and an
absolute reduction of 10.91% and relative reduction of 31.96%
compared with archive-patcher. (2) its tunable parameter al-

lows us to achieve a good tradeoff between compression ratio
and recompression time.

The contributions of this paper are summarized as follows:
• We have proposed two general approaches to transform-

ing the deflate stream into the full decoded similarity
space and partially decoded similarity space, with low re-
compression time. The first approach uses recompression-
aware searching mechanism based on a general full
decoding tool while the second approach uses a novel
solution to transform a deflate stream into the partial
decoded similarity space with differencing-friendly LZ77
token reencoding.

• We have proposed an algorithm called MDiffPatch to
exploit both the full and partial decoded similarity spaces.
The algorithm can well balance compression ratio and
recompression time by exposing a tunable parameter.

• Extensive evaluation results show that MDiffPatch
achieves lower compression ratio than state-of-the-art
algorithms and its tunable parameter allows us to achieve
a good tradeoff between compression ratio and recom-
pression time.

II. BACKGROUND

A. APK file format

The APK file format encapsulates the entire content of an
Android application, including its code (.dex files), libraries
(.so files), and resources (e.g., .png, .jpg and many others), etc.
The APK format is basically a compressed archive that adheres
to the widely used ZIP file format. Some files in the APK
files are compressed, e.g., using different versions of deflate
algorithms with different compression parameters. Some files
in the APK files are not compressed (i.e., in store mode).

During the installation process, the Android operating sys-
tem verifies the APK’s signature against the embedded public
key. If the signature is valid and matches the public key,
application is allow to be installed on device. In order to ensure
successful installation, it is required that the differencing
algorithm should be able to reconstruct the original new
version of APK file to ensure the correctness of the signature.

B. Deflate algorithm

Deflate is a lossless data compression algorithm that uses a
combination of LZ77 and Huffman coding. Fig. 1 illustrates
the overall process of the deflate algorithm (e.g., in zlib) that
performs the LZ77 algorithm (①-⑤) at the first stage and
performs Huffman encoding (⑥-⑧) at the second stage, with
the input bytes stream “BACACACBACA”.

LZ77 encoding: LZ77 tokens can be divided into two
classes and both can be represented by a three-byte tuple (x,
y, z):

• A literal (LIT) token: This is similar to the add instruction
in the delta file. For a literal token, x=y=0, and z
specifies the character which should be present in the
uncompressed file. We also use LIT<‘z’> to represent
this token.

Fig. 1: The process of deflate algorithms.

• A reference (REF) token: This is similar to the copy
instruction in the delta file. For a reference token, z
specifies length of the repeated sequence, x and y re-
spectively specifies the lower and higher 8 bits of the
distance from the current position back to the start of the
repeated sequence, limited to the 32kB window size. We
also use REF<distance, length> to represent this token.
For example, REF<2,4> in step 4 in Fig. 1 means the
reference position is 2 prior to the current position and
the length is 4 bytes.

It is worth noting that different deflate algorithms and differ-
ent compression parameters can result in different mechanisms
in how to generate a REF token.

Huffman encoding: First, the number of occurrences for the
values in the LIT and REF tokens are counted ⑥. Second, two
Huffman trees ⑦ are generated, i.e., one code tree for literals
and lengths and a separate code tree for distances. Finally, the
deflate stream ⑧ is produced, consisting of Huffman tree code
and the values of token encoded by Huffman code. Note that
the Huffman encoding process is largely the same for almost
all deflate algorithms.

C. Precomp

Precomp is an existing tool to decompress deflate streams
to the full decoded similarity space and reconstruct them using
an enhanced zlib algorithm, allowing reconstruction using a
very small metadata so that they are bit-to-bit-identical with
the original stream. In the decoding phase, precomp tries to
reencode the uncompressed stream using an enhanced zlib
algorithm. The difference between the original deflate stream
and the reencoded stream are encoded as metadata which is
stored along with the decoded stream. In the recompression
phase, precomp is able to generate the original deflate stream
with the help of the metadata. While the size of the metadata
is kept small for precomp by using various optimization
techniques, the recompression time at the mobile side could
be prohibitively large.

A key dominating factor for the large recompression time
lies in generating the REF token for the LZ77 stream. As
explained earlier, at the first stage of the deflate algorithm, the
LZ77 algorithm will identify the repeated segment in the byte
stream and encode it into a REF token. Precomp dynamically
builds up a hash table in order to efficiently identify the most
similar REF token for the LZ77 stream. When building the
hash table, the hash value of each three-consecutive characters

B A C X B A C X B A C A B A C X B A C A
hashing

0x4812 ...

maximum chain depth = 4
match position = 2

840^

matching

Fig. 2: Example of hash match in precomp.

is calculated. If the hash values for multiple three-character
segments are the same, they are chained using a list with
each element denoting the positions of the first character.
Fig. 2 shows such an example. The hash value for “BAC”
is 0x48. There are four appearances of “BAC” preceding
the current position and the corresponding positions (i.e.,
0,4,8,12) are stored in the element of list. The hash table
is used to compactly encode the current characters starting
from the current position (denoted using dashed line). To
encode the last 4 bytes, precomp first calculates the hash value
of “BAC”, and obtains the hash value 0x48. Then precomp
searches through the corresponding list, and find the position
from which common segments with the longest length can be
identified. The string “BACA” at position 8 is considered as
the best match for the unencoded last 4 bytes of “BACA”.
A REF<8, 4> token will be generated to represent the last
4 bytes, where 8 and 4 means repeating a 4-byte segment
at a distance of 8. Note that precomp individually uses a
compression strategy. precomp may generate different REF
tokens and it encodes these differences in the metadata so that
the decompressed stream can be recompressed identically.

In precomp, maxchainDepth is a key parameter to limit the
maximum list length for finding a match for a given hash
value. This value will have an impact on both the search
time complexity and the optimality of match. For the example
shown in Fig. 2, when the maxchainDepth is set to 4, a total
of 4 searches will be performed, and the best match the depth
of 2 will be found. However, when the maxchainDepth is set
to 1, the suboptimal match at the depth of 1 will be identified
since only one search will be performed. By default, this value
is set to the maximum possible depth in precomp.

III. EXPLOITING THE FULL DECODED SIMILARITY SPACES

While it is easy to decompress a deflate stream into the
fully decoded space, it is difficult to recompress the decoded
byte stream into the original deflate stream. This is because
different versions of deflate algorithms and different com-

Fig. 3: The maximum chain depths and the match positions
for a typical APK file.

pression parameters can be used for compression. Subjected
to the specification of deflate stream [5], this information
will not be stored. The existing approach—archive-patcher
can decode and recompressed it identically by enumerating
all possible compression parameters of zlib. For the deflate
bytes compressed using other popular algorithms (e.g., 7zip,
libdeflate, and etc), archive-patcher cannot transform them into
the full decoded space.

To address the above issue, we have proposed an approach
based on precomp which we have described in detail in
Section II-C. As we have mentioned in Section II-C, the
maxchainDepth parameter in precomp has a large impact on
both the search time complexity and the optimality of match.
We have also empirically find that such a default value would
cause large searching time during recompression and a non-
negligible portion of searching time is unnecessary.

Fig. 3 shows the maximum chain depths and the match
positions for each hash value for all match operations for a
typical APK file. We can clearly see that

• Most match positions are far below the default max-
chainDepth (set at 2048). In other words, we could
use a smaller maxchainDepth without influencing the
optimality of match positions.

• The actual chain depths are very different for different
hash values, suggesting that it might be helpful for each
list to use a different maxchainDepth.

Recompression-aware searching mechanism. The above
observations motivate us to design a recompression-aware
searching mechanism for generating the most appropriate REF
token. We use a tuple (mi, di, hi), i ∈ [1, n] to denote a
match operation, where i denotes the i-th match operation,
mi denotes the match position, di denotes the maximum chain
depth (note that the length of chain is dynamically updated)
when the match is performed and hi denotes the hash value.
The searching time complexity is: T =

∑n
i=1 di. If we use L

to limit the length of list corresponding to hash value hi, the
search time for the i-th match operation would become

t(i, L) =

{
di di ≤ Lhi

Lhi di > Lhi

(1)

The use of L may incur the penalty of mismatch, i.e., the
actual match position m is larger than the maximum allowable

Fig. 4: The steps of greedy algorithm: (a) Build hash table.
(b) Calculate benefit weight ratio. (c) Exclude element step
by step until

∑
t(i) ≤ qT . The red element is selected to be

excluded.

search length, i.e., m > L. The penalty for an individual match
operation can be calculated as:

p(i, L) =

{
0 mi ≤ L

1 mi > L
(2)

The problem we would like to solve is to find values of
L1, ..., Lhmax

(where the subscript denotes the hash values
with hmax being the maximum hash value) in order to

Minimize

n∑
i=1

p(i, Lhi
)

s.t.

n∑
i=1

t(i, Lhi
) ≤ qT

(3)

where q is a predefined value (i.e,. percentage) to limit the
maximum search time at the mobile side. In our current
implementation, q = 0.5.

Solving this problem using existing solvers would incur
a large computation overhead since the number of decision
variables is large, i.e., 65535, the number of possible hash
values. To address this issue, we propose a greedy algorithm
which works as follows:

(1) Build hash table. The algorithm first scans each match
operation, builds a hash table. Each element in the list (corre-
sponding to a specific hash value) is associated with a weight
denoting the number of matches. For example, the match
operations, i.e., (1,1,h2), (1,2,h2) (2,3,h2) (3,4,h2), lead to a
list corresponding to h2 with 4 elements shown in Fig. 4(a).

(2) Calculate benefit weight ratio. We use e to denote an
element in the lists. h(e) denotes its hash value. d(e) denotes
e’s position (or depth) in the list. w(e) denotes its weight, i.e.,
the number of matches of this element. The benefit in search
time reduction for e is calculated as

∆t(e) =
∑

i:hi=h(e)

t(i, d(e))−
∑

i:hi=h(e)

t(i, d(e)− 1) (4)

With friends like friends With ith friends like friends①

②

③

Fig. 5: Differencing results of the case where a few characters
are added into an existing file, i.e., “With friends like friends”
→ “With ith friends like friends”. ① indicates the decom-
pressed stream, ② indicates the LZ77 stream, ③ indicates the
deflate stream. Different bytes are indicated in red color.

The benefit weight ratio for e is simply r(e) = ∆t(e)/w(e).
(3) Exclude element step by step. The algorithm tries to

exclude the minimum weighted number of elements from the
lists while satisfying the maximum allowable search time at
the same time. The algorithm exclude the trailing element with
a weight of 0 for each list. Then the algorithm operates from
top to down, and right to left. In each step, the algorithm tries
to exclude an element with the highest benefit weight ratio,
i.e., the minimum weight and maximum benefit in search time
reduction. The algorithm ends up until

∑
t(i) ≤ qT . Fig. 4

shows each execution steps of this algorithm.

IV. EXPLOITING THE PARTIAL DECODED SIMILARITY
SPACES

As we have mentioned in Section II-B, all deflate algorithms
first compress the file using LZ77, and then further compress
the LZ77 stream using huffman encoding. LZ77 performs at
the byte level while huffman encoding performs at the bit level.
Transforming the deflate stream into partial decoded space
(i.e., LZ77 stream) can result in significantly larger similarity
compared with performing comparison in the original (e.g.,
compressed) similarity space, since all existing differencing
algorithms operates at the byte level.

Fig. 5 shows an example change case where we add a few
characters into an existing file. We can see that the delta would
be very large if comparing the compressed files (e.g., deflate
streams) although the actual changes are very small. However,
if we compare the files in the partial decoded spaces (i.e.,
decompressing the compressed files into LZ77 streams), we
retain a much smaller delta compared with computing the delta
of two deflate streams.

Only huffman encoding should be performed when trans-
forming a LZ77 stream (partial decoded stream) to the original
deflate stream. Therefore, operating in the partial decoded
spaces has two additional benefits. First, it is easy to re-
compress the LZ77 stream to the original deflate stream
with the saved huffman trees regardless of the specific de-
flate algorithms. Second, computing at the partial decoded
space can result in significantly smaller recompression and
reconstruction time at the mobile side, because only huffman
encoding is performed during the recompression stage.

1010.. 1011..

decode

LZ77 stream
101.. (0,0,’B’) ... (2,0,4) ... (7,0,4) ...

deflate stream

encode

① ②

Fig. 6: Workflow of partial decode and partial encode.
Fig. 6 depicts the workflow of partial decode and partial

encode. When performing partial decoding ①, we use the
Huffman tree code at the head of blocks to decode the bit
stream in the block to obtain the LZ77 stream. The Huffman
tree code will remain in the partial decoded space as metadata.
When performing partial encode ②, we encode the LZ77
stream to Huffman codes through the saved metadata to obtain
the original deflate stream.

Differencing-friendly LZ77 tokens reencoding. A LZ77
stream in the partial decoded space consists of a series of
LZ77 tokens. As we have described in Section II-B, LZ77
tokens can be divided into LIT and REF tokens and both can
be represented by a three-byte tuple (x, y, z).

While the byte form of the LZ77 tokens is friendly
for Huffman encoding, it is not originally designed and
fully optimized for difference computation. Fig. 7 shows
an example change case when we change an old file
“BBBBACACACBACA” to a new file “BBBBACX-
CACBACA”. When encoded using LZ77, the old file will be
transformed to LIT<‘B’>REF<1,3>LIT<‘A’>LIT<’C’>
REF<2,4>REF<7,4> and the new file will be transformed to
LIT<‘B’>REF<1,3>LIT<‘A’>LIT<‘C’>LIT<‘X’>LIT<
‘C’>LIT<‘A’>LIT<‘C’>REF<7,3>, as indicated in Fig. 7.
Comparing the old and new files in the LZ77 space would
generate two copy instructions and two add instructions. Note
that the copy instructions (e.g., in HDiffPatch as well as
bsdiff) can copy not only identical segments but also similar
segments, and the additional segment difference (encoded
using Run-Length-Encoding, i.e., RLE) is added to the copied
segment to generate the final segment in the new file. For
example, the cost of the segment difference of (0,0,0,0,0,0)
is 2 bytes when RLE is applied (i.e., five zeros). The total
cost of the four instructions will be (3+2)+6+(3+2)+6=22
bytes. We can see that a very small change in the old file
would generate a relatively large difference in the LZ77
space: the three byte representation of literal tokens is not
compact enough and it would cause large overhead in the
add instruction.

To address this issue, we have designed a differencing-
friendly encoding scheme to reencode the LZ77 stream. The
revised reencoding scheme works as follows: First, we make
the LIT token representation more compact by using only one
byte to represent a LIT token. Second, we use an additional
escape character to precede a REF token to make it distin-
guishable from LIT tokens. We have chosen 0xAA as the
escape character since it has a low frequency in .so and .dex
files from our observation. When the value of LIT token is
also 0xAA, we will use two 0xAA to represent it. Finally,
considering that REF tokens of length 3 often occupy the
largest proportion of REF tokens, we omit the length byte

‘B’ \T 1 0 ‘A’ ‘C’ \T 2 0 4 \T 7 0 40 0 ‘B’ 1 0 3 0 0 ‘A’ 0 0 ‘C’ 2 0 4 7 0 4

0 0 ‘B’ 1 0 3 0 0 ‘A’ 0 0 ‘C’ 0 0 ‘X’ 0 0 ‘C’ 0 0 ‘A’ 0 0 ‘C’ 7 0 3 0 0 ‘A’ ‘B’ \T 1 0 ‘A’ ‘C’ ‘X’ ‘C’ ‘A’ ‘C’ \T 7 0 ‘A’

Copy ins: 3B added 6B Copy ins: 3B added 6B
seg. diff: 2B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) seg. diff: 2B (0, 0, 0, 0, 0, 0)

Copy ins: 3B
seg. diff: 10B (0, 0, 0, 0, 0, 0, -82, 65, 65, 63, 0, 0, 128, 61)

old

new

old

new

(a) (b)

Fig. 7: The example of differencing the LZ77 stream in partial decoded space for a pair of files, i.e., BBBBACACACBACA
→ BBBBACXCACBACA. The LZ77 stream of old file and new file are LIT<‘B’>REF<1,3>LIT<‘A’>LIT<’C’>
REF<2,4>REF<7,4> and LIT<‘B’>REF<1,3>LIT<‘A’>LIT<‘C’>LIT<‘X’>LIT<‘C’>LIT<‘A’>LIT<‘C’>REF<7,3>
LIT<‘X’> respectively. The “\T” indicates escape character 0xAA. The value with · acutally means the value + 128.

and set the highest bit of the “y” field in the three byte tuple
representation to 1. It is possible since the highest bit of “y”
is currently unused because the distance byte is limited to a
32k window.

The above reencoding scheme has a more compact repre-
sentation in the byte stream and it is also more differencing
friendly than LZ77’s original encoding scheme. Fig. 7 shows
the same example using our scheme. We can see that com-
paring the reencoded LZ77 streams will only generate one
single copy instruction with the segment difference being 10B.
This is because the cost of this segment difference is 2B for
encoding six zeros using RLE and 8B without using RLE.
Therefore, the total cost of the copy instruction is 3+10=13
bytes.

V. A TUNABLE ALGORITHM EXPLOITING BOTH
SIMILARITY SPACES

We have described two approaches exploiting the full and
partial decoded similarity spaces for difference computation.
Generally speaking, computing at the full decoded similarity
space results in a small delta. However, it can result in
additional overhead of the patch and much longer recon-
struction time. Computing at the partial decoded similarity
space will typically generate a larger delta but incurs a small
reconstruction time.

Fig. 8a shows a typical change case in which comparing
in the full decoded similarity spaces generate the smallest
delta, at the cost of longer recompression time at the mobile
side. However, it is also possible that comparing in the partial
decoded similarity spaces generate a smaller delta. Fig. 8b
shows such a case. This can be due to two reasons. First,
the added bytes in the full decoded space can be compressed
by REF tokens in LZ77 streams. Second, the full decoded
file contains additional metadata for recompression. Partial
decoding will be preferred in the cases where partial decoding
yields a smaller delta size, as partial decoding always has a
lower recompression time.

Based on these observations, we have devised MDiffPatch,
which combines the approaches we have described above with
a tunable parameter α. The algorithm tries to compares at the
full decoded similarity spaces for a total of Fα = α · Sdeflate,
where Sdeflate denotes the total number of deflate bytes in APK,
and make the optimal strategy for differencing with α, that is,
to get the smallest delta file size with the limited number of
bytes transformed into full decoded space.

Differencing result of HDiffPatch for MASNIFEST.SF in full decoded space

Differencing result of HDiffPatch for MASNIFEST.SF in partial decoded space

(a)

Differencing result of HDiffPatch for libmain.so in full decoded space

Differencing result of HDiffPatch for libmain.so in partial decoded space

(b)

Fig. 8: Differencing results of HDiffPatch for two pairs of
files in APK. In the rectangle, the added bytes are indicated
in black color, and the copied bytes are indicated in grey color.
(a) The case where full decoding is most beneficial. (b) The
case where partial decode is most beneficial.

Algorithm 1 shows the pseudocode for MDiffPatch at the
differencing phase. The algorithm tries to select a deflate file
fi in APK with size si and benefit bi being the reduced size
of delta files computing in the full decoded space compared
with computing in the partial decoded space. The algorithm
should have a set of files in APK for possible full decoding
until the full decoded bytes reaches Fα or the remaining files
have negative benefits (i.e. partial decoding is better). This is a
classical 0-1 knapsack problem with the capacity being the Fα

and each item being the file (selected or not selected), which
can be solved by dynamic programming that select the deflate
files to reach the maximum benefit, i.e., lowest compression
ratio, while keeping the full decoded bytes within Fα to restrict
the high recompression time caused by full decoding.

It is relatively simple for MDiffPatch in the reconstruction
phase since we have recorded necessary metadata information
in the delta file (we omit the details due to space limit).

VI. EVALUATION

We implement MDiffPatch by integrating techniques and
algorithms we have proposed in Section III-V, based on open-
source software including precomp, zlib, HDiffPatch. The new
lines of code is approximately 2000 in C. In this section, we
evaluate performance of MDiffPatch compared with state-of-
the-art algorithms.

Algorithm 1: MDiffPatch (differencing phase)
Input : old source APK Aold, new target APK Anew , the ratio α
Output: delta file ∆

1 Get a list of pairs of files in APK that have changed
2 L← {(fold(i), fnew(i))}ni=1, fnew(i) ∈ Anew and fold(i) is the

corresponding file in Aold, fnew(i) ̸= fold(i)
3 for each (fold(i), fnew(i)) in L do
4 Differencing fold(i) and fnew(i) in partial decoded space by

HDiffPatch, get the delta file ∆p

5 Differencing fold(i) and fnew(i) in full decoded space by
HDiffPatch, get the delta file ∆f

6 b(i)← size(∆p)− size(∆f)
7 if bi > 0 then
8 s(i)← size of fnew(i)

9 else
10 s(i)← maximum

11 Fα ← α· size of {filenew(i)}ni=1
12 /* 0/1 Knapsack Problem Solver seekMax */
13 F[1..n] = seekMax(n,Fα,b[1..n],s[1..n])
14 for i = 1..n do
15 if F [i] == 1 then
16 Full decode fold(i), fnew(i), update Aold and Anew

17 else
18 Partial decode fold(i), fnew(i), update Aold and Anew

19 Perform HDiffPatch between Aold and Anew and write instructions
to ∆

20 Add metadata L to ∆
21 Perform zstd compression on ∆

TABLE I: The 10 representative application updates and the
400 updates. ⋆ indicates that it is a game application.

Name Version Old size (B) New size (B)
Douyin 22.9.0→23.0.0 168,405,402 169,354,581
Zhihu 8.38.0→8.39.0 69,060,906 70,652,038

WeChat 8.0.27→8.0.28 276,602,366 266,691,829
Weibo 12.10.2→12.11.0 206,500,685 207,162,286

QQ 8.9.15→8.9.18 311,322,716 307,940,064
Baidu 13.19.5.10→13.21.0.11 137,200,701 137,805,661
Bilibili 7.3.0→7.4.0 102,429,902 101,626,272
Youku 10.2.57→10.2.59 65,399,355 65,639,977

PUBG Mobile ⋆ 1.19.3→1.20.13 2,056,739,892 2,037,120,844
Honkai Impact 3 ⋆ 6.0.0→6.1.0 613,738,862 634,074,809

......
Sum 400 updates 98.69 GB 99.13 GB

A. Methodology

Evaluation platform. We run our differencing algorithm on
a sever with Intel i7-12700 CPU @2.10GHz with 20 cores,
16GB DDR4 RAM @3200 MT/s with Ubuntu 22.04 LTS. We
run our reconstruction (including recompression) algorithm on
smartphone ZTE Axon 10. The CPU is a Snapdragon 855 with
AArch64 Cortex-A76 based Kryo 485 architecture, 8 cores at
2.84 GHz. and 6 GB of RAM.

Dataset. We select 150 normal and 50 game apps with the
highest downloads in a popular App Market up until November
14, 2022. Each app includes three consecutive recent versions,
for a total of 600 APKs. There are a total of 400 update cases
(i.e., update to the newest version) in our dataset. We also
select 10 representative APK and 10 representative update
cases with the top downloads for a detailed study. Table I
shows the statistics about the 10 update cases in our dataset.

Algorithms for comparison. We compare the following
algorithms:

• HDiffPatch. To the best of our knowledge, HDiffPatch
is the most efficient algorithm in terms of compression
ratio and reconstruction time. It is actually used in well-
known app markets (e.g., OPPO’s App Market) for app
updates. We configure HDiffPatch by using the default
settings, e.g., segment matching using suffix array and
delta compression using zstd-21 [8].

• archive-patcher. It is the algorithm developed by Google
and it uses zlib for decompression and recompression. We
configure archive-patcher by using the default settings,
e.g., delta compression using zlib-9 [1].

• MDiffPatch. It is the algorithm we have developed in this
paper. MDiffPatch has a tunable parameter α which con-
trols how to transforming the deflate bytes into different
similarity spaces.

• MDiffPatch-precomp. It is the algorithm which directly
builds on top of precomp without recompression-aware
searching. This algorithm always tries transform all de-
flate bytes into the full decoded similarity space.

Metrics. Evaluations focus on the three key metrics:
• Compression ratio. The compression ratio is defined as

the ratio between the delta size and the size of the new
file. A smaller compression ratio is preferred as it saves
more network bandwidth.

• Reconstruction time. It is time to reconstruct the new file
from the delta and the corresponding old file on the mo-
bile side. Recompression (to the original APK) occupies
a large fraction in the reconstruction time, for algorithms
which employ decompression-before-differencing.

• Reconstruction memory usage. We measure average
memory usage during the reconstruction phase on the
mobile side.

B. Main results

Detailed results for representative updates. Fig. 9a shows
the composition of APK (new version). Different colors show
information whether the file in APK is deflated or not (i.e., in
store mode), whether it is deflated using zlib or some other
deflate algorithms, and whether the file is updated. We can see
that: (i) Most of the files in normal APK are compressed as
deflate stream, while most of the files of game applications
are stored without compression (see PUBG M, Honkai 3rd
in Fig. 9a). (ii) The number of updated files account for a
large proportion of the total files. However, it doesn’t mean a
large amount of changed bytes since there may exist only a
small change in the updated file. (iii) Only three representative
APKs mainly consist of zlib-compressed deflate streams, i.e.,
Bilibili, PUBG M and Honkai 3rd, indicating that many
popular applications tend to use other more specific deflate
algorithms with higher compression ratio. Note that deflate
stream using other algorithms (i.e., not zlib) cannot handled
by state-of-the-art algorithms, e.g., archive-patcher.

Fig. 9b shows the comparison of compression ratio of
different algorithms. We can see that: (i) MDiffPatch (α=1)
is performs the best in terms of compression ratio. (ii) MD-
iffPatch (α=0) is also much better than other algorithms.

DouyinZhihuWechatWeibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
deflate(zlib) deflate(other) store updated

(a)

Douyin Zhihu Wechat Weibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
tio

HDiffPatch
archive-patcher

MDiffPatch (=0)
MDiffPatch (=0.5)

MDiffPatch (=1)
MDiffPatch-p

(b)

Douyin Zhihu WechatWeibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0

20

40

60

80

Re
co

ns
tru

ct
in

g
tim

e
(s

ec
)

HDiffPatch
archive-patcher

MDiffPatch (=0)
MDiffPatch (=0.5)

MDiffPatch (=1)
MDiffPatch-p

(c)

Douyin Zhihu WechatWeibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0

200

400

600

800

Re
co

ns
tru

ct
in

g
 m

em
or

y
us

ag
e

(M
B)

HDiffPatch
archive-patcher

MDiffPatch(=0)
MDiffPatch(=0.5)

MDiffPatch(=1)
MDiffPatch-p

(d)

Fig. 9: Comparison of different algorithms performance for 10 representative app updates.

Douyin Zhihu WechatWeibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
tio =0

=0.2
=0.4
=0.6

=0.8
=1

(a)

Douyin ZhihuWechatWeibo QQ Baidu Bilibili Youku
PUBG M

Honkai 3rd
0
5

10
15
20
25
30
35
40

Re
co

ns
tru

ct
in

g
tim

e
(s

ec
)

=0
=0.2

=0.4
=0.6

=0.8
=1

(b)

Fig. 10: MDiffPatch performance with different α for 10 representative app updates.

The exception is Bilibili which uses zlib for compression
and thus can well be handled by existing algorithms such
as archive-patcher. (iii) The compression ratio of MDiffPatch
decreases with the increase of α. (iv) The compression ra-
tio of MDiffPatch (α = 1) is only slightly larger than
MDiffPatch-precomp, which means that the recompression-
aware searching mechanism only incurs a very small impact
on the compression ratio. Note that archive-patcher fails to diff
game applications, e.g., PUBG M and Honkai 3rd, because of
their excessive size.

Fig. 9c shows the reconstruction time of different algo-
rithms. We can see that: (i) The reconstruction time of
MDiffPatch (α=0) is relatively small while the reconstruction
time of MDiffPatch (α=1) is relatively high. When α = 0,
all deflate is transformed into partial decoded space, which
make the reconstruction of deflate streams fast because only
the Huffman encoding is performed. When α = 1, all deflate
is transformed into full decoded space, which make the re-
construction of deflate streams slow because of the process of
LZ77 algorithm. (ii) The reconstruction time of MDiffPatch

increases with the increase of α. (iii) The reconstruction time
of MDiffPatch (α=1) is much smaller than that of MDiffPatch-
precomp due to the novel optimization technique we have
proposed in Section III.

Fig. 9d shows the reconstruction memory usage of different
algorithms. We can see that: (i) HDiffPatch has the low-
est memory usage. (ii) MDiffPatch-precomp has the highest
memory usage due to the use of large hash table. (iii) The
reconstruction memory usage of MDiffPatch increases with
the increase of α. It is reasonable since more memory will be
used in order to compress more fully decoded bytes.

Impacts of the tunable parameter α. Fig. 10a shows the
comparison of compression ratio of MDiffPatch with different
α for the representative app updates. We can see that: (i)
The compression ratio decreases as α increases. (ii) The
compression ratio of normal APKs is more sensitive to α,
compared with game app. This is because the deflate stream
only occupies a small fraction of the entire game application
which is illustrated in Fig. 9a.

Fig. 10b shows the comparison of reconstruction time of

TABLE II: Comparison of MDiffPatch with other algorithms
for 400 app updates. Ver. rate denotes the success rate for the
verification of the reconstructed apps.

Algorithm Compression ratio Recons. time Ver. rate
HDiffPatch 43.84% 0.46 sec 100%

archive-patcher 34.14% 6.31 sec 100%
MDiffPatch (α=0) 28.05% 2.79 sec 100%

MDiffPatch (α=0.5) 25.91% 6.45 sec 100%
MDiffPatch (α=1) 23.23% 10.80 sec 100%

MDiffPatch with different α for the representative app updates.
We can see that (i) The reconstruction time increases as α
increases. (ii) The reconstruction time of normal APKs is less
sensitive to α, compared with game app.

To summarize, MDiffPatch can strike a reasonable bal-
ance between compression ratio and reconstruction time, thus
achieving the required level of flexibility by exposing the
tunable parameter α.

Results for 400 app updates. Table II shows the evaluation
results for 400 app updates with respect to two key metrics
including compression ratio and reconstruction time. We can
see that: (i) When α = 1, MDiffPatch achieves the best
compression ratio, i,e., 23.23%. It means an absolute reduction
of 20.61% and relative reduction of 47.01% compared with
HDiffPatch and an absolute reduction of 10.91% and relative
redunction of 31.96% compared with archive-patcher. The
reconstruction time is kept within 1.5x compared with archive-
patcher. (ii) When α = 0, MDiffPatch achieves an absolute re-
duction of 15.79% and relative reduction of 36.01% compared
with HDiffPatch in terms of compression ratio. It achieves
an absolute reduction of 6.09% and relative reduction of
17.84% compared with archive-patcher in terms of compres-
sion ratio. The reconstruction time is only 44.21% compared
with archive-patcher since partial decoding and reencoding
is significanly faster than full decoding and reencoding. (iii)
The verification success rate (Ver. rate) is 100%, i.e., all the
reconstructed new apps successfully pass the verification of
signatures.

VII. RELATED WORK

We divide related work into two categories: differencing
algorithms and decompression-before-differencing techniques.

Differencing algorithms. Many differencing algorithms
have been proposed by researchers throughout the years [2],
[6], [7], [15], [16], [19], [21], [23]. The well-known diff
[17] utility in Linux exhibits a proficient ability in generating
deltas between textual data. More sophisticated binary differ-
encing algorithms have emerged recently, e.g., xdelta3 [18],
bsdiff [26], and HDiffPatch [31]. xdelta3 uses a hash match
to identify identical segments, while bsdiff and HDiffPatch
employ suffix-arrays to find approximate matching segments.
These algorithms only perform differencing in the original
similarity space. However, the majority of binary code and
resource files within the APK are independently compressed
using the deflate algorithm, which drastically reduces the
similarity between similar files. Therefore, their performance
degrades when a large portion of files in APK are compressed.

MDiffPatch is based on HDiffPatch. The difference is
that MDiffPatch employs decompressing-before-differencing
in order to achieve a higher level of compression ratio.

Decompressing-before-differencing techniques. To pre-
serve a large similarity when comparing two APKs, Delta++
[29] and archive-patcher [9] employ the decompression-
before-differencing technique to significantly reduce the delta
size. The key idea of these algorithm is trying to decompress
the compressed files before perform difference computation so
as to retain a much larger similarity. These algorithms build on
top of zlib, and try to guess the correct compression parameters
so that they can recompress the decoded bytes to the original
deflate stream.

A variety of compression tools are available for the deflate
algorithms. Notably, zlib [1] and 7zip [24] are extensively
utilized for a wide range of compression tasks. They can
transform uncompressed files into compressed files through
the deflate algorithm which consists of two main stages
including LZ77 encoding and Huffman encoding. Precomp
is an general tool to decompress deflate streams to the full
decoded similarity space and reconstruct them using an en-
hanced zlib algorithm, allowing reconstruction using a very
small metadata so that they are bit-to-bit-identical with the
original stream. Precomp is mainly used for more compact
compression (e.g., compression using more advanced tools on
the decoded stream) and is not tailored for use in combination
with differencing algorithms.

MDiffPatch borrows idea of decompression-before-
differecing and builds on top of precomp. The difference
is that MDiffPatch explores the decompression-before-
differencing technique much further. (1) It addresses the
insufficient decompression problem in existing differencing
algorithms. Both the full decoding and partial decoding
approaches in MDiffPatch can handle all deflate streams
while start-of-the-art algorithms (e.g. archive-patcher) can
only handle zlib-compressed deflate streams. (2) It addresses
the problem of high recompression time at the mobile side,
by employing novel techniques such as recompression-aware
searching (see Section III) and partial decoding (Section IV).

VIII. CONCLUSION

In this paper, we exploit two similarity spaces, i.e., the full
decoded similarity space and the partially decoded similarity
space, for efficient and flexible incremental updates of mobile
applications. The first approach uses recompression-aware
searching mechanism based on a general full decoding tool
to transform deflate stream to the full decoded similarity
space with a configurable searching complexity. The second
approach uses a novel solution to transform a deflate stream
into the partial decoded similarity space with differencing-
friendly LZ77 token reencoding. We have also proposed
an algorithm MDiffPatch exploiting both similarity spaces.
Results shows that MDiffPatch achieves lower compression
ratio than state-of-the-art algorithms and its tunable parameters
allows us to achieve a good tradeoff between compression ratio
and recompression time.

REFERENCES

[1] ADLER, M. zlib. https://www.zlib.net/, 2022.
[2] AJTAI, M., BURNS, R., FAGIN, R., LONG, D. D., AND STOCKMEYER,

L. Compactly Encoding Unstructured Inputs with Differential Compres-
sion. Journal of the ACM (JACM) 49, 3 (2002), 318–367.

[3] APIWATTANAPONG, T., ORSO, A., AND HARROLD, M. J. A Differ-
encing Algorithm for Object-oriented Programs. In Proc. of IEEE/ACM
ASE (2004), pp. 2–13.

[4] BURNS, R., STOCKMEYER, L., AND LONG, D. D. In-place Reconstruc-
tion of Version Differences. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 15, 4 (2003), 973–984.

[5] DEUTSCH, P. Deflate. RFC 1951: Deflate compressed data format
specification version 1.3,, 1996.

[6] DONG, W., CHEN, C., BU, J., AND LIU, W. Optimizing Relocatable
Code for Efficient Software Update in Networked Embedded Systems.
ACM Transactions on Sensor Networks (TOSN) 11, 2 (2014), 1–34.

[7] DONG, W., LIU, Y., CHEN, C., BU, J., HUANG, C., AND ZHAO, Z.
R2: Incremental Reprogramming using Relocatable Code in Networked
Embedded Systems. IEEE Transactions on Computers (TC) 62, 9
(2012), 1837–1849.

[8] FACEBOOK. zstd. https://github.com/facebook/zstd, 2023.
[9] GOOGLE. archive-patcher. https://github.com/google/archive-patcher,

2023.
[10] GOOGLE. Googleplay. https://play.google.com, 2023.
[11] GOOGLE. Smart app updates. https://www.engadget.com/

2012-06-27-google-brings-incremental-app-updates-to-android-added-encrypti.
html, 2023.

[12] HE, B., XU, H., JIN, L., GUO, G., CHEN, Y., AND WENG, G. An
Investigation into Android In-App Ad Practice: Implications for App
Developers. In Proc. of IEEE INFOCOM (2018), pp. 2465–2473.

[13] HUAWEI. Huaweiappgallery. https://appgallery.huawei.com, 2023.
[14] KAUL, S., YATES, R., AND GRUTESER, M. Real-time status: How often

should one update? In Proc. of IEEE INFOCOM (2012), pp. 2731–2735.
[15] LI, B., TONG, C., GAO, Y., AND DONG, W. S2: a Small Delta and

Small Memory Differencing Algorithm for Reprogramming Resource-
constrained IoT Devices. In Proc. of IEEE INFOCOM (WKSHPS)
(2021), pp. 1–2.

[16] LI, Q., FENG, X., WANG, R., LI, Z., AND SUN, L. Towards fine-
grained fingerprinting of firmware in online embedded devices. In Proc.
of IEEE INFOCOM (2018), pp. 2537–2545.

[17] LINUXIZE. diff-command-in-linux. https://linuxize.com/post/
diff-command-in-linux/, 2023.

[18] MACDONALD, J. xdelta3. http://xdelta.org/, 2023.
[19] MAY, M. J. Donag: Generating Efficient Patches and Diffs for Com-

pressed Archives. ACM Transactions on Storage (TOS) 18, 3 (2022),
1–41.

[20] MI. autoupdate. https://dev.mi.com/console/appservice/autoupdate.html,
2023.

[21] MO, B., DONG, W., CHEN, C., BU, J., AND WANG, Q. An Efficient
Differencing Algorithm Based on Suffix Array for Reprogramming
Wireless Sensor Networks. In Proc. of IEEE ICC (2012), pp. 773–777.

[22] OPPO. Oppo incremental update. https://open.oppomobile.com/, 2023.
[23] PANTA, R. K., AND BAGCHI, S. Hermes: Fast and energy efficient

incremental code updates for wireless sensor networks. In IEEE
INFOCOM (2009), pp. 639–647.

[24] PAVLOV, I. 7zip. https://www.7-zip.org/, 2023.
[25] PAVLOV, I. attemp to recompress files with deflate of 7zip. https://

sourceforge.net/p/sevenzip/discussion/45797/thread/7303ced019/, 2023.
[26] PERCIVAL, C. Binary diff/patch utility. http://www.daemonology.net/

bsdiff/, 2023.
[27] RARLAB. Winrar. https://www.rarlab.com/download.htm, 2023.
[28] SAMSUNG. Huaweiappgallery. https://galaxystore.samsung.com, 2023.
[29] SAMTELADZE, N., AND CHRISTENSEN, K. DELTA++: Reducing the

Size of Android Application Updates. IEEE Internet Computing 18, 2
(2013), 50–57.

[30] SHANG, X., HUANG, Y., MAO, Y., LIU, Z., AND YANG, Y. Enabling
qoe support for interactive applications over mobile edge with high user
mobility. In IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications (2022), pp. 1289–1298.

[31] SISONG. HDiffPatch. https://github.com/sisong/HDiffPatch, 2023.
[32] STATISTA. Number of mobile app downloads worldwide

from 2018 to 2023. https://www.statista.com/statistics/241587/
number-of-free-mobile-app-downloads-worldwide/, 2023.

[33] TENCENT. Yingyongbao incremental update. https://36kr.com/p/
1640964784129, 2023.

[34] TRIDGELL, A., MACKERRAS, P., ET AL. The rsync algorithm.
[35] XU, Q., LIAO, Y., MISKOVIC, S., MAO, Z. M., BALDI, M., NUCCI,

A., AND ANDREWS, T. Automatic generation of mobile app signatures
from traffic observations. In 2015 IEEE Conference on Computer
Communications (INFOCOM) (2015), pp. 1481–1489.

