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Abstract—In recent years, Bluetooth Low Energy (BLE) has
become one of the most wildly used wireless protocols and it
is common that users carry one or more BLE devices. With
the extensive deployment of BLE devices, there is a significant
privacy risk if these BLE devices can be tracked. However,
the common wisdom suggests that the risk of BLE location
tracking is negligible. The reason is that researchers believe there
are no stable BLE fingerprints that are stable across different
scenarios (e.g., temperatures) for different BLE devices with the
same model. In this paper, we introduce a novel physical-layer
fingerprint named Transient Dynamic Fingerprint (TDF), which
originated from the negative feedback control process of the
frequency synthesizer. Because of the hardware imperfection,
the dynamic features of the frequency synthesizer are different,
making TDF unique among different devices, even with the same
model. Furthermore, TDF keeps stable under different thermal
conditions. Based on TDF, we propose BTrack, a practical BLE
device tracking system and evaluate its tracking performance in
different environments. The results show BTrack works well once
BLE beacons are effectively received. The identification accuracy
is 35.38%-57.41% higher than the existing method, and stable
over temperatures, distances, and locations.

I. INTRODUCTION

Bluetooth Low Energy (BLE) [1] has become one of

the most popular wireless protocols because of its cheap,

low-energy, and wide adaptation nature. It is common for

users to carry one or more BLE devices nowadays. According

to the Special Interest Group (SIG) research [2], the annual

shipments of BLE-compatible devices exceed 4 billion in

2022. BLE devices continuously transmit beacons to support

applications and services (e.g., Apple iBeacon [3] and Google

Eddystone [4]). Each BLE device can broadcast 77-872

beacons per minute [5].

However, by their nature, BLE beacons have the potential to

introduce significant privacy risks. Therefore, the topic of BLE

device tracking and its countermeasures are extensively studied

in the literature. Adversaries can achieve BLE device tracking

by eavesdropping that BLE beacons [6], [7]. To solve this,

manufacturers have adopted the MAC address randomization

strategy to maintain anonymity [8]–[10]. The BLE advertisers

periodically change their MAC addresses (10min-15min), so

the adversary is hard to identify whether the received beacon is
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advertised by the target or not. Approaches based on software

fingerprints [11], [12] can bypass the MAC randomization,

they typically require a very long eavesdropping time (up to

hours) and can be fixed with software updates. Many recent

approaches use physical-layer fingerprints because they have

the potential to compromise all the software-level security

mechanisms [13], [14]. The physical-layer fingerprints are

caused by manufacturing imperfections, so they can not be eas-

ily fixed or modified. There are three main types including (1)

Fingerprints based on Carrier Frequency Offset (CFO) [14],

[15]. (2) Fingerprints based on I/Q imperfections [16]. (3)

Fingerprints based on Transient delay [13]. Despite all these

efforts, BLE location tracking attacks are still considered

unreliable and impractical, as illustrated by a recent empirical

study [5]. The authors in [5] point out that (1) the CFO is hard

to distinguish devices with the same model and it is sensitive to

different thermal conditions [5], [17]. (2) The I/Q imperfection

only exists in I/Q modulation architecture, but most of the

BLE-only devices use frequency synthesizer-based modulation

architecture, which inherently has no I/Q imperfection. (3)

The transient delay is identical among devices with the same

model. To date, the common wisdom is that BLE location

tracking is not practical and the risk is negligible [5].

This paper intends to answer one essential question, i.e.,

is BLE location tracking still possible? Our study reveals

that we can extract robust physical-layer fingerprints from

imperfections in the frequency synthesizer which is a prevalent

component in all kinds of BLE chips [18], [19]. Specifically,

the frequency synthesizer is a negative feedback control

system that is used to generate target frequency, and hardware

imperfections can affect the dynamics of the control system

(e.g., response time, overshoot). We name the novel fingerprint

as Transient Dynamic Fingerprint (TDF). Although frequency

synthesizer imperfection is well recognized by the hardware

community, its use for physical-layer fingerprinting and device

tracking has long been overlooked in the research community.

The reason is two-fold. First, it is hard to extract stable finger-

prints from the frequency synthesizer. The reason is it requires

fine-grained output frequency variation during the transient

delay (14μs-32μs). Owing to the inherent time-frequency

resolution constraints of the Fourier Transform, it is infeasible

to capture the precise relationship of frequency variations

with time. Second, it is time-consuming to process the TDF

fingerprints for all BLE beacons received from crowded



advertising channels.

In this paper, we first study the impacting factors and

properties of TDF. TDF is related to several electronic compo-

nents in the frequency synthesizer, including various hardware

imperfections. We find that TDF is unique even among

devices with the same model. Besides, TDF is independent

of the temperature-sensitive crystal oscillator [17], and TDF

is relatively stable with varying temperatures. We then propose

BTrack, a BLE device identification system for user’s location

tracking. BTrack incorporates novel techniques to address the

challenges we have described earlier. First, we propose a

robust fingerprint extraction method based on the phase change

of the transient signal (instead of Fourier Transform) in order

to capture the fine-grained frequency variations with time. A

DNN-based classifier is then used to extract TDF from the

phase change. Second, to achieve device tracking in a timely

manner, we propose a bi-variate model filter to effectively filter

out those beacons transmitted by devices of different models

from the target device.

We implement BTrack with USRP B210 and evaluate with

24 popular BLE chips in four different environments. In

total, over 39,000 signal traces are collected for evaluation.

BTrack works well (82.93%-97.45% detection rate) once

the BLE beacons are effectively received. Compared

with the state-of-the-art approaches, BTrack can achieve

35.38%-57.41% higher identification accuracy and the

performance is stable over varying temperatures, distances

and environments. To the best of our knowledge, this is the

first work to exploit frequency synthesizer imperfections for

device identification and location tracking. Our contributions

can be summarized as follows:

• We propose a novel physical-layer fingerprint called TDF,

and fully study its properties, uniqueness, and stability.

• We propose BTrack, a practical device identification

system for location tracking, illustrating that the TDF can

pose a great threat to users’ location privacy.

• We implement BTrack and open source our code and

dataset1, and extensive experiments are conducted.

II. BACKGROUND AND PRELIMINARY

In this section, we first show the BLE location tracking

attacks threat model. Then, we introduce the preliminary of the

BLE and discuss the reason why the existing BLE fingerprint

is not feasible in some conditions.

A. Location Tracking Threat Model

Consider a scenario that an adversary wants to track some-

one, detecting exactly when they are present at a specific

location. The target user may carry BLE devices (e.g., ear-

phones, wearables), which continuously advertise BLE bea-

cons (77∼872 beacons per minute [5]). The adversary is

equipped with an SDR to capture the raw signal of BLE

beacons. First, it collects some beacons transmitted by the

target BLE device in an isolated environment. Then, it extracts

1https://github.com/sada45/BTrack.
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Fig. 1: CFO measurement. Fig. 2: PCA result of CFO.

physical-layer fingerprints that can uniquely represent the

target device. After that, the adversary can deploy BLE sniffers

at interest locations to capture BLE beacons. Upon receiving

a BLE beacon, the sniffers extract the physical-layer finger-

print. If one or more BLE beacons match the physical-layer

fingerprint of the target BLE devices, the adversary can infer

the presence of the target user at the corresponding location.

B. BLE Preliminary

BLE utilizes Gaussian Frequency Shift Keying (GFSK)

modulation [1]. The GFSK is a form of continuous phase

modulation and the base-band signal in the I/Q form is

Stx(t) = ejφ(t). Where the φ(t) is the phase of the signal

at time t. For transmission of bit 1, the frequency is positive

and the phase increases, and vice versa.

Then, we introduce three well-established physical layer

fingerprints and outline their respective limitations:

Carrier Frequency Offset (CFO): The CFO is the frequency

difference between the carrier frequencies of the transmitter

and the receiver. Before transmission, the base-band signal

is loaded on the carrier wave with frequency fctx and the

BLE signal over the air is ej[φ(t)+2πfctxt]. At the receiver

side, the receiver first removes the carrier wave according

to its local oscillator with frequency fcrx, and the received

base-band signal is ej[φ(t)+2πfCFOt], where fCFO = fctx − fcrx.

Since the hardware imperfection, the carrier frequencies of

each device are different. The center frequency of the received

base-band signal contains a frequency bias rather than zero,

which is known as the CFO. CFO has been widely used in

IEEE 802.15.4 and WiFi device identification [20]–[22]. BLE

exhibits a wide tolerance for CFO (up to 150 kHz) and there

have been related works that utilize CFO for Bluetooth device

identification [13], [14].

However, the CFO has two shortcomings that limit its usage

in practical BLE device identification. First, CFO is sensitive

to thermal conditions [5]. When the room temperature or the

computation workload of the BLE devices changes, the CFO

of BLE devices will change as well and cause identification

failure. Second, CFO is incapable to identify different devices

of the same model. We apply a preliminary experiment to

illustrate that. We use the preamble to calculate the CFO.

The preamble over the air is 0b01010101 and the signal

phase during the preamble is shown in Fig. 1. With the CFO,

all peaks and troughs are linear increases or decreases. We

perform linear fits to the peaks and troughs, respectively.

The average slope a indicates the phase error induced by the

CFO, which can then be calculated as a/2π. We collect the

CFO of eight nRF52840 chips [23]. The CFOs on 40 BLE
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Chips Avg. Transient
Delay (μS)

Standard
Deviation

nRF52840-1 14.80 1.59

nRF52840-2 14.77 1.75

nRF52840-3 14.63 1.67

CC2650-1 24.76 0.96

CC2650-2 24.79 0.72

CC2650-3 24.90 0.50

TABLE I: Start-up delay.
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channels are considered as a feature vector of a device. Fig. 2

shows the result of Principal Component Analysis (PCA).

Four nodes are gathered together, and two of them are totally

overlapped. Utilizing CFOs of all 40 channels would not

provide significant benefits as the explained variance ratio of

the primary principal component is 98.89%.

Transient delay: There is a delay between the signal am-

plitude rising and the start of BLE data transmission. Fig. 3

shows a raw signal sample collected from a nRF52840

chip with 20MHz sampling rate. The existing work [13]

takes the transient delay as a physical-layer fingerprint to

identify BLE devices. However, the transient delay is different

among different models but similar between devices with

the same model. Tab. I shows the average transient delay

and standard deviation of six BLE chips. Given that the

standard deviation is significantly larger than the average

transient delay difference, it becomes difficult to discern

whether the variations between the measured and average

values are attributable to fluctuations or disparities between

different devices. Therefore, the transient delay can not be

used to identify individual devices with the same model.

I/Q Imperfection: There are DC value and phase differences

between the in-phase (I) and quadrature (Q) paths in the

BLE modulation architecture. A straightforward architecture

is shown in Fig. 4(a). The I and Q paths are separately

controlled to generate the signal. Because of the imperfection

of the Digital-Analog Converters (DAC) and mixers, the I

and Q signal have different DC values and phases. This

architecture is widely used for WiFi/BLE combo chips [5].

However, the GFSK is not an inherently I/Q modulation

method. The frequency synthesizer-based modulation archi-

tecture (Fig. 4(b)) is a more stable and cost-efficient choice.

Data bits directly control the frequency synthesizer to generate

the target frequency in real-time and directly transmit the I

and Q paths. Since there is no DAC and mixer needed in this

architecture, it has no I/Q imperfection and the cost is lower.

This modulation architecture is wildly used in BLE chips,

especially for BLE-only chips [19], [24], [25]. Therefore, the

I/Q imbalance can not be used to identify the BLE chips with

frequency synthesizer-based modulation architecture.
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Fig. 5: The architecture of frequency synthesizer, which is a

negative feedback control system.

III. FINGERPRINTING WITH FREQUENCY SYNTHESIZER

IMPERFECTION

In the paper, we propose a novel physical-layer fingerprint

named Transient Dynamic Fingerprint, which is caused by

frequency synthesizer imperfections. The frequency synthe-

sizer is a negative feedback control system that is used to

generate target frequency. The output frequency variations

show the dynamics of the control system, which are affected

by hardware imperfections and unique among different devices

even with the same model. In this section, we start by

introducing the basic architecture of the frequency synthesizer.

Then, we show the uniqueness of TDF. After that, we show

this fingerprint is stable under different thermal conditions.

A. Frequency Synthesizer Modeling

The frequency synthesizer is used to generate a range

of frequencies from a single reference frequency. The most

common ones are Phase Locked Loop (PLL) based frequency

synthesizers. It is a negative feedback control system and

the functional diagram is shown in Fig. 5(a). A typical

frequency synthesizer consists of a Phase Frequency Detector

(PFD), loop filter, Voltage Control oscillator (VCO), and a

frequency divider. The frequency divider is in the feedback

loop and the frequency of the output signal fout(t) is divided

with N to get the divided frequency fdiv(t). The divided

signal is then input into the PFD with the reference signal.

The PFD generates an error signal that can be presented

as e(t) = KPFD(ϕref(t) − ϕdiv(t)). Where the KPFD is the

PFD gain, ϕref(t) and ϕdiv are the phase of the reference

signal and divided signal, respectively. The loop filter is used

to remove the noise, which can maintain stability in the

loop and improve the overall performance of the synthesizer.

The output of the loop filter v(t) is the control voltage of

the VCO, and the output frequency and phase of VCO are

fout(t) = ffree + v(t)KVCO and ϕout(t) =
∫ t

0
fout(τ)dτ. Where

ffree is VCO free-running frequency, KVCO is VCO gain.

Before transmitting BLE data, the chip should first let the

frequency synthesizer generates the stable carrier frequency

fc. This is exactly what the RF chip does during the transient

delay. First, the divisor of the frequency divider is set to

N = fc/fref. Then, the frequency synthesizer circuit is closed

and a negative feedback control process starts. When the

frequency reaches the steady state, the output frequency equals

the carrier frequency, and the VCO control voltage should

be (fc − ffree)/KVCO. We further analyze how the frequency

synthesizer reaches the steady state after the circuit is turned

on. Fig. 5(b) shows the transfer function of the frequency
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Fig. 6: Simulate results of frequency synthesizer dynamics

with different damping factors.

synthesizer in the S-domain. The PFD and frequency divider

are linear components, therefore, the transfer functions are

KPFD and 1/N , respectively. The loop filter is a Low-Pass

Filter (LPF) and we take the first-order LPF for example. The

transfer function can be presented as:

HLPF(s) =
1

1 + s
ωLPF

.

Where the ωLPF is the angular frequency of the cut-off

frequency of the loop filter. The output phase of VCO is the

integral of its output frequency and its transfer function is:

HVCO(s) =
KVCO

s
.

Therefore, the transfer function of frequency synthesizer is:

H(s) =
KPFDHLPF(s)HVCO(s)

1 + 1
NKPFDHLPF(s)HVCO(s)

=
ωLPFKPFDKVCO

s2 + ωLPFs+
ωLPF

N KPFDKVCO

.

(1)

It can be presented as a second-order oscillator equation:

H(s) = N
ω2
n

s2 + 2ζωns+ ω2
n

. (2)

Where ωn is the natural frequency of the system, and ζ is the

damping factor. To simplify, we consider the first N as a linear

component that will not change the non-linear features of the

frequency synthesizer. ωn and ζ can be formally presented as:

ωn =

√
1

N
ωLPFKPFDKVCO, ζ =

1

2

√
NωLPF

KPFDKVCO

. (3)

The damping factor is a crucial characteristic of control

systems, describing the system dynamics. More specifically, it

shows the vibration attenuation when this system is perturbed.

We apply a simulation that a frequency synthesizer that

generates 1.01MHz target frequency using a VCO with 1MHz

free running frequency. Fig. 6(a) shows the variation of

frequency over time. While the damping factor is small, the

system is under-damped and the frequency will fluctuate and

slowly stabilize to the target frequency. As for the over-damped

system, though there are no fluctuations, it takes a long

period to get to the target frequency. Manufacturers want

frequency synthesizers to work as the critical-damped system.

Therefore, the frequency synthesizer can quickly reach the

target frequency. Manufacturers will set a fixed transient delay

for each model according to the typical time required for

frequency synthesizers to reach the stable stage.
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Fig. 7: The received transient phase.

B. Transient Dynamics Fingerprint

In this section, we illustrate that the TDF for each device is

unique and can be used for device identification. According to

Eq. 3, the damping factor is related to ωLPF, KPFD, and KVCO.

Because of the hardware imperfection, the parameters of each

functional block in the frequency synthesizer differ among

devices, leading to different damping factors. Therefore, the

dynamics of the frequency synthesizers can be different. Our

key idea to identify BLE chips is extracting the dynamics

features of the frequency synthesizer during the transient,

we name it the TDF. To extract the TDF, we should first

acquire the output of the VCO. An intuitive way is apply-

ing Short-Time Fourier Transform (STFT) to get the output

frequency of the VCO with time like Fig. 6(a). However,

the STFT exhibits a trade-off between frequency and time

resolution. More specifically, with a larger STFT window size,

the frequency resolution is high but unable to capture the

rapid changes in the signal over time. With a smaller window,

the time resolution is high but unable to capture the small

fluctuations of frequency. Therefore, it is impossible to get

the fine-grained frequency changes versus time. Inspired by

the BLE demodulation method, we utilize the phase change

to extract the TDF. At the receiver side, the received phase is:

ϕrec(t) =

∫ t

0

2π(fout(τ)− fcrx)dτ. (4)

Fig. 6(b) shows the simulation result of the received signal

phase while the carrier frequency of the receiver is 1.01MHz.

The received phase precisely reflects the frequency changes

of the VCO output frequency, and we call the phase change

during the transient delay as the transient phase.

To get the transient phase, we first measure the CFO with the

BLE preamble and compensate each raw signal. After that, we

get the phase change during the transient delay from the raw

I/Q signal. A straightforward method is calculating the phase

with ϕrec(t) = arctan(Q(t)/I(t)). However, when there is no

signal in the channel, even the noise with a small amplitude

can cause severe fluctuations in the phase. Therefore, we

calculate the amplitude-weighted phase A2ϕrec (Fig. 7(a)),

where A is the signal amplitude. Then, since the amplitude

of BLE signals decays with distance, a normalization is

required. We set the unit scale of normalization to the

absolute value of amplitude-weighted phase difference caused

by one symbol in the BLE preamble. Fig. 7(b) shows the

transient phases of nRF52840 and CC2650 on the BLE

channel 37 (2.402GHz). The phase of nRF52840 initially
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Fig. 8: Transient phases of different nRF52840 chips.

TABLE II: Feature vectors of nRF52840 chips.

Chip Min.
phase

Min. phase
time

Stable
phase Overshoot Trough

width
nRF52840-1 -0.54 7.98μS 0.60 -1.13 2.43μS
nRF52840-3 -1.00 8.53μS 0.16 -0.25 2.59μS
nRF52840-4 -0.82 8.78μS -0.13 0.16 2.56μS

decreases because the free-running frequency of its VCO is

lower than the receiving frequency. In contrast, the CC2650

exhibits the opposite behavior as the free-running frequency

of its VCO is higher. The phase changes of different models

are totally different, and the TDF is significantly different.

So it would be easy to identify different models with TDF.

We focus on the question that, whether TDF can be used to

identify devices with the same model.

Fig. 8 show the transient phase of four nRF52840 chips.

The hardware imperfection of the second one is significant,

it has become an over-damped system. The others are all

critical-damped systems but they exhibit noticeable differences

in their specific details. We extract five features to describe

the frequency synthesizer dynamics as the TDF. First, for

the decreasing stage, we take the minimal phase and the

corresponding time. Second, we take the average phase of the

stable stage as the stable phase. Then, we extract the overshoot,

which is an important feature to measure the dynamics of

a control system [26]. We take the ratio of the stable and

the minimal phase as the overshoot. Tab. II shows the TDFs

of those three critical-damped chips. There are significant

differences between them and it is possible to identify devices

with the same model based on the TDF.

C. Temperature Stability

Although the carrier frequency with CFO is generated by

the frequency synthesizer, it is not caused by the frequency

synthesizer itself. When the frequency synthesizer reaches

the stable stage, the output frequency should always be

the Nfref, while the N is fixed for each target frequency.

The CFO originated from the inaccuracy of the reference

frequency, which is generated by the crystal oscillator. The

crystal oscillator is highly sensitive to thermal conditions

changes [17], [27]. So the CFO is sensitive to the temperature.

Eq. 2-3 shows that the transfer function and damping factor are
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independent of the reference signal. Therefore, TDF is more

stable with temperatures than CFO-based fingerprints.

We further apply a preliminary to illustrate that. We extract

TDFs by placing an nRF52840 chip in a room with 26°C room

temperature. A heating plate is put on the device to change

the chip temperature. We record the chip temperature with the

internal temperature sensor. Fig. 9 shows the CFO, minimal

phase time, stable phase, trough width, and chip temperature

with the time. The CFO suffers from serious changes when

the temperature changes. The average and standard deviation

of CFO at the first 100s are 106.07KHz and 1.40, respectively.

But for the last 100s, they are 93.528KHz and 1.34. The TDF

(i.e., Fig. 9(b,c,d)) have minor changes with the temperature.

For example, the standard deviation of the trough width is

0.345 and the difference between the average values before

and after heating is only 0.098. Therefore, the TDF is more

stable to the temperature changes than the CFO.

IV. SYSTEM DESIGN

We have shown that TDF can be used for device identi-

fication and is stable to temperature changes. There are two

major issues that need to be resolved before the TDF can

be applied in practice. First, due to the high density of BLE

devices operating in the wireless channel, the receiver can

receive numbers of BLE beacons from other devices, which

significantly increases the computational overhead. Second,

there are significant differences in the transient phases of

different chip models, and it is tedious to manually analyze

and extract the TDF for each model. To solve these, we

propose BTrack, a practical device identification system with

device TDF. In this section, we provide an overview of the

BTrack system design, followed by a detailed introduction to

the significant system modules.

A. System Overview

In Fig. 10, we show the bird-eye view of BTrack’s architec-

ture. The BLE device identification involves four key stages:
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Fig. 10: System Overview of BTrack.

(1) Signal receiving: BTrack uses an SDR to collect the

raw signal with 20MHz sampling rate. To make BTrack
successfully receive BLE beacons, a low pass filter with 1MHz

cut-off frequency is applied to remove the high-frequency

noise. Then, BTrack compensates the raw signal with the

typical value of the target device model.

(2) Preprocessing: This module extracts the CFO, transient

delay, and transient phase. BTrack detects the BLE preamble.

With the preamble, the accurate CFO for each BLE packet

can be estimated, and a fine-grain CFO compensation can be

applied. After that, BTrack can apply another low-pass filter

with a lower cut-off frequency since the CFO is eliminated. It

is worth mentioning that, a lower cut-off frequency can remove

more noise and increase the identification range, but some

of the TDF can also be filtered out. An appropriate cutoff

frequency should be selected. Finally, the transient phase can

be extracted with the method mentioned in Sec. III-B.

(3) Model filtering: Due to the high density of BLE devices

operating in the wireless channel, BTrack can receive a large

number of packets from non-interest devices. This module

filters out those BLE beacons transmitted by devices of

different models from the target device. Since the CFO and

transient delay are significantly different among models, the

model filter uses them to identify the model of the devices.

We illustrate the details in Sec. IV-B

(4) Identification: The classification model takes the transient

phase as input and decides whether this sample is transmitted

by the target devices. The details are presented in Sec. IV-C.

B. Bi-variate Model Filter

According to our preliminary experiments in Sec. II-B, the

chips with the same model have identical transient delays. As

for CFO, the values are different but similar among individual

devices with the same model. The basic idea of the front

filter is utilizing the transient delay and CFO to implement

a chip model-level classifier. If the received signal exhibits

significantly different transient delay and CFO, the signal can

be ignored. An intuitive way to achieve this is to calculate the

2-D distance of transient delay and CFO between the received

signal and the average values of the target model. However, we

find that the CFO of the same model devices can form multiple

clusters, it is improper to use one average value to cover all

devices. For example, in all of our nRF52840 chips, there exist

Rev.0 (QIAAC0) and Rev.1 (QIAAD0). The average CFO of

Rev.0 and Rev.1 are 108.60KHz and -10.67KHz, respectively.

The standard deviations are 3.58 and 8.92. In Fig. 2, the four

chips on the right are Rev.0, and the left four are Rev.1.

To solve this, we propose a bi-variate model filter. It

generates the profiles of transient delay and CFO for each chip
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Fig. 11: Architecture of DNN-based classifier.

model. Each transient profile is presented as [μt, σt], where μt

is the average transient delay, and σt is the standard deviation.

The CFO can have multiple clusters, so the CFO profile is

[(μ1
c , . . . μ

n
c ), (σ

1
c , . . . σ

n
c )], where μi

c and σi
c are the average

CFO and standard deviation of i-th cluster. We use the mean

shift algorithm to cluster the device CFOs. The reason is that

the mean shift does not need the user to specify the number

of clusters. By setting the radius of the kernel (20 in the

experiment), it can automatically learn the number of clusters

present in the data. Once a signal has arrived, BTrack first

calculates the 1-D Mahalanobis distance with the transient

delay profile. If the threshold is larger than the threshold (3

in the experiment), the signal is discarded. Otherwise, BTrack
will further calculate the Mahalanobis distance between each

cluster of CFO. The filter has a larger threshold of the CFO

since it is sensitive to different thermal conditions (i.e., 10

in the experiment). If the signal belongs to any of the CFO

clusters, it will be recognized as being transmitted from a

device of the same model as the target.

C. Device Identification

We have extracted some features which are enough to

identify nRF52840 in Sec. III-B. However, we still use a

DNN-based classifier to identify devices with the transient

phase. The reason is three-fold. First, the trend of transient

phases has significant differences across different models, the

users have to re-analyze the transient phase of each model

to extract model-specific TDFs, decreasing the scalability of

the system. For example, in Fig. 7, the transient phase of

CC2650 and nRF52840 are totally different. The minimal

phase and the corresponding time used to identify nRF52840

are incompatible with CC2650. Second, it is tedious to

extract general features for each model, since there are some

anomalous devices with significantly different transient phases

in the same model (e.g., nRF52840-2 in Fig. 8). Third, our

key idea is extracting TDFs from the transient phase to infer

the hardware imperfections of frequency synthesizers. Neural

networks can comprehensively explore and extract pertinent

features, thereby enhancing the identification performance.

Fig. 11 shows the architecture of our DNN-based classifier.

We use seven-layer CNNs and one LSTM fully exploit the

spatial and temporal features of the input, followed by four

dense layers and one SoftMax layer to output the labels of the

input sample. To train the DNN model, two sets of transient

phase samples are required. The first one is collected from the

target devices. The second one is acquired from the device

database, and all of the samples are labeled as “others”. The

traces in the database is pre-collected from other devices with

the same model. The “others” set should be diverse and cover

as many potential cases as possible. Besides, it should not

include any similar devices in the “target” set. However, it is



Chip
model

Target/
Others/
Alien

Nordic
nRF52840 2/6/4

Dialog
DA14580 2/4/1

TI
CC2650 1/3/1

TABLE III: Chip

models.

nRF52840

CC2650

DA14580

Fig. 12: The setup for the evaluation.

still possible that some devices (known as alien devices) are

not included in the database before, which may cause false

positive alarms. To overcome this, we apply a classification

probability threshold. If the maximum probability corresponds

to the target devices, we check whether this probability is

higher than the threshold. If the probability is higher than

the threshold, the sample is identified as the target device.

Otherwise, this sample is identified as the “others”. In BTrack,

we select the threshold as 0.8 empirically.

V. EVALUATION

In this section, we evaluate the identification accuracy

of BTrack. Then, we evaluate the temperature stability and

robustness of BTrack. After that, we show a case study to

track moving users. Finally, we evaluate the system overhead.

A. Implementation

We implement BTrack with USRP B210. It is connected

to a laptop with i7-10750H and GTX1650ti for hardware

configuration and data processing. It scans on channel 37 to

capture the advertising packet transmitted by BLE devices.

In the evaluation, we focus on identifying chips with the

same model. We divide each model of chips into three sets:

target, others, and alien. The “target” and the “others” sets are

used for training and validating our DNN-based classifier. The

“alien” set is only used for evaluation. We choose three popular

models of BLE chips from three representative manufacturers

and the number for each group is shown in Tab. III. The

nRF52840 [23] is the class-leading BLE chip produced by

Nordic Semiconductor, which has the highest market share

among all manufacturers (41% [28]). The DA14580 [29]

is a successful commercial chip known for its low power

consumption and has been widely used in a large number of

wearable devices. The CC2650 [30] is a famous BLE chip

provided by well-established manufacturer TI. We apply the

experiment at the third floor of a building (Fig. 12), which

contains an office, a conference room, a terrace, and a corridor.

For comparison, we implement the state-of-the-art

CFO-based BLE chip identification method proposed in IEEE

S&P 2022 [5]. Specifically, we first calculate the CFO profile

of each chip in the “target” and the “others” groups. Once

a BLE packet is received, we calculate the Mahalanobis

distance between its CFO and all the known CFO profiles. If

the distance is larger than the threshold, it does not belong

to any known device, we label it as “others”. Otherwise,

the BLE packet is labeled as the type with the minimal

distance. The threshold given in [5] is 2, but we set it to 3
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Fig. 14: Matching matrix. BTrack utilizes TDF to achieve

accurate device identification, which is unique and distinguish-

able among devices even with the same chip model.

since the CFO is sensitive to temperature and we will test its

performance in different temperatures.

B. Identification Accuracy

First, we show the identification performance of BTrack.

We let the DNN-based classifier identify each device and

compare it with the CFO-based method. We collect 512

signal traces for each device in the conference room with

16°C temperature and high Signal-to-Noise Ratio (SNR). 80%

of the traces for training and 20% for evaluation. Fig. 13

shows the performance of each chip model. BTrack achieves

96.95%-99.15% accuracy, 35.38%-57.41% higher than the

CFO-based method. The reason is that BTrack achieves device

identification with TDF, which varies among devices even with

the same chip model. But the CFOs of the same model devices

are quite similar, making it hard to identify individual devices.

To further illustrate that, we show the matching matrix of 12

nRF52840 chips in Fig. 14. Each element of the i-th row

and j-th column in the matrix indicates the average matching

rate between the i-th chip and the j-th profile in the training

dataset. With TDF, there are only two nodes that show a slight

similarity (i.e., the 6, 7-th chip). In practice, the adversary

needs to ensure that the “others” set chosen from the device

database does not contain devices that are similar to those

in the “target” set. As for the CFO-based fingerprint, the

matching ratio is small and discrete, making the identification

accuracy low. There is one chip that with a high matching

ratio (i.e., the 7-th chips) since its CFO is far from typical

values. Specifically, the revision of the 7-th chip is Rev.1, and

the average CFO is 8KHz, while the CFOs of the other Rev.1

chips are between -8KHz and -14KHz.

C. Temperature Stability

We train the BTrack with the traces collected at 16°C and

use an air conditioner to control the room temperature to 20°C,

25°C, 30°C, and 35°C to simulate typical indoor temperatures

for each season. At each temperature, we collect 512 signal

traces transmitted from the device in the “target” set. Fig. 15

shows the identification accuracy of the “target” devices. The
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Fig. 15: The temperature stability of BTrack. The identification

accuracy is stable for temperature changes.
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Fig. 16: The distance and environmental stability. The

performance is stable with distances and environments.

results show that BTrack achieves 92.70%-99.80% accuracy at

all temperatures. The CFO-based method totally failed when

the temperature was higher than 30°C. The reason is the

CFO changes significantly with the temperature, exceeding the

distance threshold. For example, the average CFO and standard

deviation of one nRF52840 chip at 16°Care 109.96KHz and

1.33, and the average CFO becomes 99.37KHz at 35°C.

The difference between the average CFO is 10.59KHz with

7.96 Mahalanobis distance, much larger than the threshold.

Similarly, the CFO of DA14580 changes up to 6.52KHz, and

9.05KHz for CC2650. For nRF52840, the accuracy of the

CFO-based method increases at 20°C. We find that the CFO

has a non-monotonic relation with the temperature. There is a

turning point for CFOs of nRF52840 chips at 20°C, i.e., the

CFO raised a bit at 20°C and then decreased with temperature

increase. At this temperature, the difference between each chip

is the largest, leading to higher accuracy. For CC2650, the

accuracy to identify the “target” device with CFO (62.75%) is

higher than the identification accuracy in Fig. 13. The reason is

the CFO of the “target” device is -7.59KHz. Two other devices

have very similar CFOs (-7.50 and 7.45KHz), and we remove

them from the “others” group of the CFO-based method.

D. System Robustness

We first show the robustness regarding distance. Since the

typical communication range of BLE is 10m [31], [32], we

place the receiver 1∼11m away from the devices. The data

collection is performed in a 26°C office, which contains at

least 20 PCs, 20 smartphones, and three servers. We train

the classifier with signal traces collected at a 1m distance.

Fig. 16 shows the identification accuracy of the target devices

with different distances. BTrack can achieve 90.47%-98.98%

accuracy in all distance. The accuracy first decreases at

1m-7m, then increase a little bit after 9m. The reason is

these two locations are near the office door, away from the

large number of interference sources in the office. Meanwhile,

BTrack maintains a very low False Positive Rate (FPR) for

all the non-interest devices (<2.77%). For alien devices, the
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Fig. 17: The accuracy for BTrack tracking moving users.

BTrack works well at LOS and even with slight blockage.

TABLE IV: Runtime of each stage in BTrack (μs).
Transient
Phase len. 1. Receiving 2. Pre-

processing
3. Model
Filtering 4. Identification Total

20μs 505.99 2282.60
1.95

177.52 2966.22

30μs 524.98 2423.21 218.88 3167.18

40μs 533.67 2612.96 254.93 3401.67

FPR of nRF52840 and CC2650 are lower than 0.62%. The

DA14580 at 9m has a bit higher FPR (7.44%) and the FPR

of other scenarios is less than 4.08%.

To show the system’s robustness in different environments,

we collect signal traces of target devices from three other

places: a conference room, a terrace, and a corridor. The

distance between the receiver and the devices is 1m. We

train the DNN-based classifier with the dataset collected

from the office. BTrack achieves 94.32%-100% accuracy

across different environments. Therefore, BTrack is stable with

different environments.

E. Case Study

We also evaluate the BTrack with two mobile users at

a corridor with a corner (Fig. 17(a)). Each user carries a

nRF52840 and moves from location A to location E. Fig. 17(b)

shows the Packet Delivery Ratio (PDR) and detection rate of

BTrack. Since BLE is a short-range communication protocol

and location A is a Non-Line-Of-Sight (NLOS) scenario. The

signal transmitted from here is highly distorted and the PDR of

BLE beacons is only 33.09%. With those successfully received

BLE beacons, BTrack can still achieve a 56.90% detection rate.

Consider that mobile devices can transmit about 77-872 BLE

beacons per minute [5], BTrack can still detect the appearance

of the target within 0.37-4.14s. Once there is no blockage,

there are significant increases of BTrack performance, i.e. the

detection rate increases 10.65% from location B to location C.

The BTrack works well (detection rate ≥ 93.59%) once there

exists Line-Of-Sight (LOS) path to the receiver.

F. System Overhead

We evaluate the runtime of the four stages in Fig. 10 and

Tab. IV shows the time for each stage to process one signal

trace. The feature length should adapt to the length of the

transient delay. The time for packet filtering is fixed since

it only takes the values of CFO and transient delay. The

preprocessing stage takes the majority of the runtime since it

contains lots of time-consuming operations, such as low-pass

filtering, convolution for finding preambles, etc. The model

filter can effectively block the signals from different model

chips. We collect 1,000 BLE beacons from the office and the

model filter can filter out almost all of them.



VI. COUNTERMEASURES

We propose countermeasures to TDF-based BLE location

tracking from hardware and external interference aspects.

Hardware: To completely resolve this issue, hardware

modifications are required. For the PLL-based frequency syn-

thesizer, the most cost-efficient way is adding a switch between

the VCO and antenna. Therefore, during the transient delay,

the switch is opened, so the output frequency of VCO will not

leak into the wireless channel. After the frequency synthesizer

is stabled at the target frequency, the switch is closed so

the chip can normally transmit signals. Another solution is

using different types of frequency synthesizers. Direct Digital

Synthesizer (DDS) [33], [34] is a viable alternative to the

PLL-based synthesizer. It uses a digital circuit to directly

generate the target frequency without the negative feedback

control process. It is worth mentioning that, since the DDS

requires high-speed DACs, the cost and power consumption

of the chip will increase. This is the reason why commercial

BLE chips still prefer the PLL-based frequency synthesizer.

External interference: We also propose a defense that

does not need to change the hardware of those existing BLE

chips. To fool the adversary, the user can carry an SDR to

transmit interferences. The SDR must continuously generate

interferences so its transient phase change will not be detected.

It is synchronized with the target devices, when the target

is transmitting data, it generates high-frequency noise so the

receiver can use a low-pass filter to remove the noise and

normally receive the data. The rest of the time, the SDR

generates low-frequency noise, so that the adversary can not

capture a clean transient phase for device identification.

VII. DISCUSSION

The frequency synthesizer is a necessary part of all wire-

less chips. For low-power wireless protocols, this finger-

print is commonly present. The LoRa chips from Semtech

(SX1276/77/78/79) all use PLL-based frequency synthesizers

and the typical transient delay is 60μs [35]. The IEEE 802.15.4

chips also use PLL-based frequency synthesizers, such as the

Atmel AT86RF231 [36]. Therefore, the TDF exists in these

chips. Fortunately, unlike the BLE, these low-power protocols

are typically used in IoT devices, and few users carry these

devices around them. Therefore, it is difficult to achieve loca-

tion tracking attacks with these low-power wireless devices. As

for those high-speed wireless protocols (e.g., WiFi), they tend

to use the DDS or high-performance PLL-based frequency

synthesizer to reduce the transient delay and achieve high

throughput. The transient delays of these WiFi chips are

too short to be used for device identification. For example,

we measure the transient delay of the BCM43455 [37] on

Raspberry 4B, the transient delay is 5.86μs, much shorter

than low-power wireless protocol chips (e.g., DA14580 has

32.64μs transient delay). Besides, the mobile devices typically

work as the WiFi client, which will not continuously broadcast

beacons. Therefore, it is difficult for the adversary to achieve

location tracking attacks with the WiFi signal.

VIII. RELATED WORK

Software fingerprint: The BLE devices will periodically

change their MAC address to achieve anonymity. However,

the existing works show that some software identifiers remain

consistent. J. Becker et al find the token for generating

random MAC addresses is unique and remains static [11].

The Generic Attribute (GATT) profile can also be used

to create a fingerprint that can be exploited to circumvent

anti-tracking features of the BLE standard [12]. However,

these methods require the adversary to continuously collect

broadcast packets from the device for a period of time.

Besides, these software-level identifiers can be removed by

software updates. Therefore, it is difficult to use the software

fingerprint to achieve location tracking attacks.

Radio Frequency fingerprint: The Radio Frequency Fin-

gerprint (RFF) originated from hardware imperfections and

is introduced during the manufacturing process. These im-

perfections deviate slightly from their nominal specifications

and also vary among different devices. Researchers have

extensively studied and proposed many RFFs for different

wireless technologies as device identifiers. Existing finger-

prints include carrier frequency offset (CFO) [38]–[40], clock

skew [41], IQ imperfections [22], [42], etc. The CFO and

clock skew originated from the imperfection of the crystal

oscillator, which is sensitive to temperature and can not

be used to identify the same model devices. The I/Q im-

perfections only exists in I/Q modulation RF front-ends.

Therefore, it can not be used to identify the BLE-specific

chips. Some of the works focus on utilizing the transient

portion of BLE [43]–[45]. They detect the envelope of the

transient portion of the RF signal and extract coarse-grained

features (e.g., skewness, deviation of the amplitude envelope,

and transient delay.). However, these methods require very

high-performance equipment (e.g., spectrum analyzer) since

the frequency of the received intermediate frequency signal

is about 450MHz [46]. Besides, the coarse-grained features

are insufficient to uniquely identify numbers of devices [5]. In

this paper, we propose the TDF of the PLL-base frequency

synthesizer. This fingerprint originated from the negative

feedback control process of the frequency synthesizer, which

contains the dynamic feature of the system. The TDF is unique

among devices, even for the same model devices.

IX. CONCLUSION

In this paper, we first propose TDF, which originated with

the negative feedback control process of the PLL-based fre-

quency synthesizer and can be affected by hardware imperfec-

tions. Our analysis and preliminaries show that TDF is unique

and stable under different thermal conditions. With TDF, we

propose BTrack, a practical BLE location tracking system.

Compare with the existing CFO-based method, BTrack has

35.38%-57.41% higher identification accuracy and is stable

with different temperatures, distances, and environments. This

system shows the threat of BLE location tracking attacks is

still substantial and we propose possible countermeasures.
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